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A B S T R A C T

This study considers a manufacturer performing preventive maintenance (PM) on a product according to a
one- or two-dimensional (2-D) policy. The one-dimensional PM policy is based on either time or usage, while
in the two-dimensional case, PM is scheduled based on both scales. The product carries a 2-D warranty that
offers protection for a certain amount of time and usage. Its cumulative usage is continuously monitored by the
manufacturer and is assumed to follow a gamma process. In this context, we first propose a doubly stochastic
Poisson process model for product failures where the stochastic intensity is influenced by the gamma usage
process in an additive manner. We then explicitly derive the expected total costs of the two one-dimensional
PM policies using the concepts of first hitting times and gamma bridges. For the 2-D PM policy, we express the
associated cost in terms of the value function of a dynamic programming model. In the numerical experiments,
we show how the variability of the usage process affects the costs of the three PM policies and find that the
optimal 2-D policy degenerates into a one-dimensional policy.
1. Introduction

Preventive maintenance (PM) refers to the routine maintenance
of products that involves inspections, cleaning, lubrication, and parts
replacement to prevent potential failures and unplanned downtime.
There are two primary types of PM services in the aftermarket: tradi-
tional and flexible. In a traditional maintenance service, a manufacturer
provides the same after-sales support to the entire customer population
(e.g., the Volkswagen Jetta Maintenance Schedule). Unnecessary ser-
vice costs or potential revenue losses may be incurred due to a lack
of market segmentation. A flexible maintenance service has a menu
of plan options for customers to choose from, as is the case with
the Porsche Scheduled Maintenance Plan. Despite more flexibility in
plan choice, each plan in the menu is designed based on the typical
characteristics of the corresponding customer group, implying that a
homogeneous service is still delivered in this segment. Additionally,
some customers might not have a clear understanding of their own
needs so that they are unable to identify their most suitable options.

In an attempt to address those shortcomings, many manufacturers
such as truck firm Scania have embraced customized maintenance
services with the help of Internet of Things (IoT) technology. Cus-
tomization, as a business strategy, aims to sell products or services
tailored to specific customer needs [1]. With permission, manufacturers
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can collect real-time sensor data during the use phase of a product to
know how, where and by whom the product is being used. Such valu-
able information is then utilized to customize a maintenance service
for each individual customer. Manufacturers benefit from this service
by effectively engaging with customers and providing unique value to
them. Finally, a closed-loop service system can be built to improve
customer relations.

IoT data about product usage include not only basic variables like
running time, the number of runs, and miles driven, but also variables
regarding product conditions, operating environment, and customer
behavior. This type of data has been traditionally difficult to obtain
as most products, once sold, are beyond the control of manufacturers,
and only limited field data is gathered during repair and maintenance
processes [2]. In the IoT era, however, there are ample data on usage
available at the individual level. Leveraging usage data to enhance
decision-making is not easy. One reason is the random nature of usage
data due to the variability in operations. A product may be used at
various levels in any given period. For example, the daily mileage of
a commercial vehicle fluctuates with customer demand. For products
operating in the natural environment, such as wind turbines, their
future usage is also generally uncertain. Consequently, the stochastic
nature of usage data must be taken into account when making PM
decisions.
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In this paper, we consider a manufacturer that performs PM on a
product under a two-dimensional (2-D) warranty while continuously
monitoring the cumulative usage of the product. We focus on exploring
how its random cumulative usage affects the manufacturer’s cost. We
start by modeling the cumulative usage as a gamma process and then
calculate the expected total costs of three PM policies with different
triggering mechanisms. The first is a time-based PM policy where PM
is performed at regular time intervals. It is the most commonly used
PM policy in real-life situations. The second policy is usage-based and
triggers a PM action once cumulative usage grows by a predetermined
amount. According to Djamaludin et al. [3], this policy is specifically
designed for products that tend to wear with use, such as automobile
tires and aircraft engines. The last is a 2-D PM policy based on both
time and usage. It requires that the next PM action occur after a
certain amount of time or usage, whichever comes first. Considering
the prevalence of 2-D PM in the automotive industry [4], we will study
these three policies in the context of a 2-D warranty.

The rest of the paper is structured as follows. In Section 2, we
review the relevant literature. In Section 3, we introduce gamma usage
processes for modeling product failures. In Section 4, we calculate
the expected total costs of the two one-dimensional PM policies. In
Section 5, we construct a cost model of the 2-D PM policy using dy-
namic programming. In Section 6, we show by numerical experiments
the effect of a stochastic usage process on the expected total costs
of the three policies. We conclude in Section 7 with a summary and
discussion.

2. Related literature

In the last decade, there has been considerable interest in planning
PM activities under 2-D warranty. Wang and Xie [5] provided an
excellent review of this literature. Wang et al. [6,7] both considered
periodic PM within base and extended warranty periods. For used prod-
ucts sold with a 2-D warranty, Wang et al. [8] proposed a reliability
improvement program involving either PM or upgrades, whereas Dai
et al. [9] developed cost models for a used product that is upgraded
prior to sale and then preventively maintained according to different
policies. Several papers have incorporated nonconstant maintenance
efforts in their PM models; that is, the effort or level of each PM action
is not captured by a single variable [10–13].

The above-mentioned papers measured PM intervals in calendar
time. Beyond that, PM can also be scheduled based on product usage,
such as flight hours [14–16], but the existing warranty literature on
usage-based PM remains limited. 2-D PM under a 2-D warranty was
first analyzed by Wang and Su [4], who optimized the extent of PM as
well as its time and usage intervals for the entire customer population.
Following this framework, Su and Wang [17] examined the impact of
the time of warranty purchase on a manufacturer’s cost, while Wang
et al. [18] considered the case where customers do not bring their
products in for maintenance on time.

We note that product replacement is often seen as a means of PM
(see, e.g., [19–21]). Using 2-D renewal theory, Yang and Nachlas [22]
investigated a 2-D replacement policy when repair and replacement
times are nonnegligible. Hu et al. [23] predicted the demand for spare
parts under a 2-D replacement policy. There are also 2-D replacement
models where the two scales are linearly combined, resulting in a
policy that covers a triangular region in the 2-D plane (see, e.g.,
[24]). Frickenstein and Whitaker [25] extended the covered region to
the class of lower sets.

Most models in the 2-D warranty literature assume that the cu-
mulative usage of a product is a linear function of time with an
unknown slope [26–28]. Although this assumption is supported by
many statistical analyses of automobile warranty data, there are still
reasons to investigate nonlinear usage processes. For the majority
of drivers, what we observe is only an approximately linear sample
path of a usage process, and a common usage rate distribution is not
2

sufficient to customize PM services. For the rest, their usage paths
tend to exhibit varying degrees of nonlinearity. As noted by Lawless
et al. [2], it is short-term variations in usage rates that make usage
paths not precisely linear. Several approaches appear in the literature
to represent nonlinear usage paths, such as the accelerated failure
time model [1,29], a weighted prediction model [30], and the logistic
function [31]. Eliashberg et al. [31] treated cumulative usage as a
stochastic function with respect to time. The functional form they chose
reflects the decline in usage rate as a product ages.

We can also view product usage as a stochastic process. Singpur-
walla and Wilson [32] described a usage process using three sets of
nonnegative random variables, namely the lengths of time in busy and
idle states as well as the usage rate at each busy period. De Jonge
and Jakobsons [33] proposed a Markov switching model where busy
and idle times are assumed to have exponential distributions. When
periodically monitoring product usage, we can consider usage rates to
be i.i.d. random variables by first dividing the planning horizon into
equally spaced intervals, as in [13,19].

As for continuous monitoring, a gamma usage process is a very
attractive alternative because of its mathematical tractability. Since it
is a pure jump process, a countably infinite number of jumps occur
in any finite time interval, suggesting that this process is appropriate
for modeling the gradual accumulation of usage and can provide a
good approximation of continuous usage paths [34]. Singpurwalla and
Wilson [35] described the evolution of cumulative usage as Poisson,
gamma, and Markov additive processes. Lawless and Crowder [34]
fitted a joint model with random effects for recurrent events and sta-
tionary gamma usage processes in the context of automobile warranty
claims. Their model checks indicated good agreement between the
gamma usage process and actual warranty data. Pulcini [36] estimated
a nonstationary gamma usage process model with heterogeneity using
automobile failure data. For the application of gamma processes in the
field of reliability, we refer interested readers to van Noortwijk [37],
Singpurwalla [38], and Chen et al. [39].

Compared with the extant literature, the contribution of this re-
search is threefold. First, to our knowledge, we are the first to study
the three PM policies under a gamma usage process. The process
variability not only leads to uncertainties in the number of PM actions,
PM instants, and warranty end time, but also brings the possibility of
performing PM in both dimensions under a 2-D PM policy. Second, to
determine the expected total costs of the three policies, we develop
a novel dynamic programming model with two state variables (time
and cumulative usage) using the concepts of first hitting times, gamma
bridges, and doubly stochastic Poisson processes. Third, 2-D PM in
practical settings is typically delivered as a homogeneous service to the
entire group of customers, whereas our focus is on a personalized PM
service for a specific customer or usage process.

3. Model formulation

3.1. Gamma usage process

We assume that a usage process is determined by external factors,
that is, the current product usage is unaffected by the previous history
of failures [40]. This assumption is a reasonable approximation of
reality because repair times are generally much shorter than the mean
time between failures [2]. We view a usage process as a unidimen-
sional concept captured by cumulative usage. Such a process is often
approximated as linear when cumulative usage can only be obtained
at the time of failure and is unavailable for products without failures.
However, with the advent of the IoT, real-time tracking of usage has
become feasible, enabling the recording of complete usage histories.
This technological advancement allows analysts to use some stochastic
processes in usage modeling. Both between- and within-unit variations in

usage paths can be incorporated.
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Table 1
Nomenclature.

Symbol Definition

𝑀(𝑡) Cumulative usage at time 𝑡
𝛼𝑡, 𝛽 Shape function and rate parameter of the gamma process
𝜆(𝑡) Failure rate at time 𝑡
𝜆0(𝑡) Baseline failure rate at time 𝑡
𝛬0(𝑡) ∫ 𝑡

0 𝜆0(𝑠) d 𝑠
𝜂 Usage deterioration efficient
𝑁(𝑡) Number of failures up to time 𝑡
𝐿 First failure time
𝑇 , 𝑈 Age and usage limits of the 2-D warranty
𝑇 Expiry time of the 2-D warranty
𝜏(𝑥) First hitting time of the gamma process
𝜔𝑖 Instant of the 𝑖th PM action
𝜌 Improvement factor of PM
𝑐𝑟 Repair cost
𝑐𝑝 PM cost
𝑟 Usage rate
𝐶0 Expected repair cost when no PM action is taken
𝑛 Number of PM actions under the time-based PM policy when 𝑇 = 𝑇
�̂� 𝑛 when no randomness is involved
𝐶1(𝑛) Expected total cost of the time-based PM policy
𝑚 Number of PM actions under the usage-based PM policy when

𝑀(𝑇 ) > 𝑈
�̂� 𝑚 when no randomness is involved
𝐶2(𝑚) Expected total cost of the usage-based PM policy
𝐽 (𝑥, 𝑦) Expected total cost from point (𝑥, 𝑦) to the end of the 2-D warranty

under the 2-D PM policy
𝐶3(𝑛, 𝑚) Expected total cost of the 2-D PM policy

We denote a product’s cumulative usage at time 𝑡 as 𝑀(𝑡) and its
usage process as {𝑀(𝑡), 𝑡 ≥ 0} (see Table 1 for a summary of notation).

ur model assumes that the usage process {𝑀(𝑡), 𝑡 ≥ 0} follows a
stationary gamma process, which possesses the following properties:

• 𝑀(0) = 0;
• For any 0 ≤ 𝑡1 < 𝑡2, 𝑀(𝑡2) −𝑀(𝑡1) ∼ Gamma(𝛼(𝑡2 − 𝑡1), 𝛽);
• {𝑀(𝑡), 𝑡 ≥ 0} has positive and independent increments.

Here the gamma distribution is parameterized in terms of a shape
parameter 𝛼(𝑡2 − 𝑡1) > 0 and a rate parameter 𝛽 > 0. In general, the
shape parameter is the difference between the values of an increasing
function passing through the origin at 𝑡 = 𝑡2 and 𝑡 = 𝑡1, but linearity
is assumed for simplicity. The second property shows that the gamma
process has stationary increments. The probability density function for
𝑀(𝑡2) −𝑀(𝑡1) can be expressed as:

𝑀(𝑡2)−𝑀(𝑡1)(𝑥; 𝛼(𝑡2 − 𝑡1), 𝛽) =
𝛽𝛼(𝑡2−𝑡1)

𝛤 (𝛼(𝑡2 − 𝑡1))
𝑥𝛼(𝑡2−𝑡1)−1𝑒−𝛽𝑥 (1)

for 𝑥 > 0. Consider the increment of the gamma process over the inter-
val [0, 𝑡]. Then we have 𝑀(𝑡) ∼ Gamma(𝛼𝑡, 𝛽). Its expectation E[𝑀(𝑡)] =
𝛼𝑡∕𝛽 and variance Var[𝑀(𝑡)] = 𝛼𝑡∕𝛽2 both increase linearly with time.
Hence, the gamma process is able to model random fluctuations in a
linear usage path. Multiplying 𝑀(𝑡) by a positive constant 𝑘, we have
𝑘𝑀(𝑡) ∼ Gamma(𝛼𝑡, 𝛽∕𝑘).

Define 𝜏(𝑥) = sup{𝑡 ∶ 𝑀(𝑡) ≤ 𝑥} as the first hitting time of 𝑥 by the
gamma process. It is the time when the gamma usage process starting
at zero first hits the cumulative usage 𝑥. The probability distribution
function of this random variable is given by

𝐹𝜏(𝑥)(𝑡) = 𝑃 (𝜏(𝑥) ≤ 𝑡) = 𝑃 (𝑀(𝑡) ≥ 𝑥) =
𝛤 (𝛼𝑡, 𝛽𝑥)
𝛤 (𝛼𝑡)

, (2)

where 𝛤 (𝑎, 𝑦) = ∫ ∞
𝑦 𝑧𝑎−1𝑒−𝑧 d 𝑧 is the upper incomplete gamma function

or 𝑦 ≥ 0 and 𝑎 > 0. The probability density function of 𝜏(𝑥) is

𝜏(𝑥)(𝑡) =
𝛼

𝛤 (𝛼𝑡) ∫

∞

𝛽𝑥

(

ln 𝑧 − 𝜓(𝛼𝑡)
)

𝑧𝛼𝑡−1𝑒−𝑧 d 𝑧, (3)

where 𝜓(𝑦) = d ln𝛤 (𝑦)∕ d 𝑦 is the Digamma function for 𝑦 > 0.
Next we introduce the concept of a gamma bridge for later use.
3

Similar to the definition of a Brownian bridge, a gamma bridge is a
conditional stochastic process in the interval [𝑡1, 𝑡3], given the values of
the process at both endpoints of the interval. For any 𝑡2 ∈ (𝑡1, 𝑡3), we
have two independent random variables: 𝑀(𝑡2)−𝑀(𝑡1) ∼ Gamma(𝛼(𝑡2−
1), 𝛽) and 𝑀(𝑡3) −𝑀(𝑡2) ∼ Gamma(𝛼(𝑡3 − 𝑡2), 𝛽). From the properties of
he gamma distribution, it follows that the first gamma random variable
ivided by the sum of the two gamma random variables has a beta
istribution with parameters 𝛼(𝑡2−𝑡1) and 𝛼(𝑡3−𝑡2). That is, 𝑀(𝑡2)−𝑀(𝑡1)

𝑀(𝑡3)−𝑀(𝑡1)
∼

Beta(𝛼(𝑡2−𝑡1), 𝛼(𝑡3−𝑡2)). Moreover, 𝑀(𝑡2)−𝑀(𝑡1)
𝑀(𝑡3)−𝑀(𝑡1)

is independent of 𝑀(𝑡3)−
𝑀(𝑡1). Since 𝑀(𝑡2)−𝑀(𝑡1) is equal to 𝑀(𝑡3)−𝑀(𝑡1) times a beta random
ariable, the conditional probability density of 𝑀(𝑡2) − 𝑀(𝑡1) given
(𝑡3) −𝑀(𝑡1) is

𝑓𝑀(𝑡2)−𝑀(𝑡1)∣𝑀(𝑡3)−𝑀(𝑡1)(𝑦 ∣ 𝑥)

=
𝛤 (𝛼(𝑡3 − 𝑡1))

𝛤 (𝛼(𝑡2 − 𝑡1))𝛤 (𝛼(𝑡3 − 𝑡2))
1
𝑥

( 𝑦
𝑥

)𝛼(𝑡2−𝑡1)−1 (
1 −

𝑦
𝑥

)𝛼(𝑡3−𝑡2)−1 (4)

for 0 < 𝑦 < 𝑥. In addition, we can obtain

E
[

𝑀(𝑡2) ∣𝑀(𝑡1),𝑀(𝑡3)
]

= E
[

𝑀(𝑡2) ∣𝑀(𝑡1),𝑀(𝑡3) −𝑀(𝑡1)
]

=𝑀(𝑡1) + E
[

𝑀(𝑡2) −𝑀(𝑡1) ∣𝑀(𝑡1),𝑀(𝑡3)

−𝑀(𝑡1)
]

=𝑀(𝑡1) +
𝑡2 − 𝑡1
𝑡3 − 𝑡1

(

𝑀(𝑡3) −𝑀(𝑡1)
)

.

(5)

he third equality holds because of the stationarity of the gamma
rocess. We will frequently use Eq. (5) in the rest of the paper.

.2. Doubly stochastic Poisson process

The product is subject to deterioration and wears with time and
sage. We let 𝜆(𝑡) denote its failure rate at time 𝑡. For analytical
ractability, we assume that the effect of usage on reliability is captured
y the following additive hazards model (see, e.g., [31,35]):

(𝑡) = 𝜆0(𝑡) + 𝜂𝑀(𝑡), (6)

here 𝜆0(𝑡) is the baseline failure rate at time 𝑡 and 𝜂 > 0 is the
sage deterioration factor. We use 𝜆0(𝑡) to describe the deterioration
ue to failure causes other than usage, such as rusting or damage
y unexpected events. When environmental effects are small or the
robability of adverse events tends to remain unchanged over time,
ne can adopt a constant baseline failure rate. The additive hazards
odel with a linear baseline failure rate has been widely used in the 2-D
arranty literature, and He et al. [41] estimated it with truck warranty
ata. Aalen [42] discussed the merits of the additive hazards model
ver the usual proportional one (see, e.g., [43,44]).

We assume that a failure is corrected by minimal repair, that is,
he failure rate is the same as it was just before the failure. Under this
ssumption, the failure process can be modeled by a Poisson process
hose intensity is given by the above failure rate function. As the

ntensity is driven by a stochastic process, this Poisson process is itself
doubly stochastic Poisson process (also called a Cox process), which
as initially proposed by Cox [45]. Note that once the realization of the

ntensity is given, it will become a nonhomogeneous Poisson process.
enote by 𝑁(𝑡) the number of failures up to time 𝑡. Then we have

[𝑁(𝑡)] = E
[

∫

𝑡

0
𝜆(𝑠) d 𝑠

]

= ∫

𝑡

0
E[𝜆(𝑠)] d 𝑠 = ∫

𝑡

0

(

𝜆0(𝑠) +
𝜂𝛼𝑠
𝛽

)

d 𝑠

= 𝛬0(𝑡) +
𝜂𝛼𝑡2

2𝛽
, (7)

where 𝛬0(𝑡) = ∫ 𝑡0 𝜆0(𝑠) d 𝑠 is the baseline mean function. In the first
quality, the integral of a gamma process with respect to time can
e estimated by Riemann sums [35,46,47]. In the second equality, we
nterchange the order of expectation and integration. The third equality
ses the fact that 𝑀(𝑠) ∼ Gamma(𝛼𝑠, 𝛽), which has mean 𝛼𝑠∕𝛽. The
variance of the number of failures 𝑁(𝑡) is
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Var[𝑁(𝑡)] = E
[

∫

𝑡

0
𝜆(𝑠) d 𝑠

]

+ Var
[

∫

𝑡

0
𝜆(𝑠) d 𝑠

]

= 𝛬0(𝑡) +
𝜂𝛼𝑡2

2𝛽
+ ∫

𝑡

0 ∫

𝑡

0
E[𝜆(𝑠)𝜆(𝑧)] d 𝑠 d 𝑧 −

(

𝛬0(𝑡) +
𝜂𝛼𝑡2

2𝛽

)2

= 𝛬0(𝑡) +
𝜂𝛼𝑡2

2𝛽
+
𝜂2𝛼𝑡3

3𝛽2
.

(8)

The first equality follows from the law of total variance and the fact that
Var[𝑁(𝑡) ∣ 𝑡] = E[𝑁(𝑡) ∣ 𝑡] = ∫ 𝑡0 𝜆(𝑠) d 𝑠, where 𝑡 = 𝜎{𝜆(𝑠), 𝑠 ≤ 𝑡} is the
sigma-algebra generated by the process {𝜆(𝑠)}𝑠≤𝑡. In the second equal-
ity, the last two terms represent the variance of the conditional expec-
tation E[𝑁(𝑡) ∣ 𝑡], and E

[

(E[𝑁(𝑡) ∣ 𝑡])2
]

= E
[

∫ 𝑡0 𝜆(𝑠) d 𝑠 ∫
𝑡
0 𝜆(𝑧) d 𝑧

]

. The
third equality holds because E[𝑀(𝑠)𝑀(𝑧)] = 𝛼min(𝑠, 𝑧)∕𝛽2+𝛼2𝑠𝑧∕𝛽2. To
see this, consider, for example, the case where 0 ≤ 𝑠 ≤ 𝑧. Then we can
write E[𝑀(𝑠)𝑀(𝑧)] as E[𝑀(𝑠)(𝑀(𝑠) +𝑀(𝑧) −𝑀(𝑠))]. That the doubly
stochastic Poisson process is overdispersed follows from Var[𝑁(𝑡)] ≥
E[𝑁(𝑡)].

Another quantity of interest in the doubly stochastic Poisson process
is the arrival time of the first failure, which we denote as 𝐿. When the
manufacturer makes a replacement at failure, we need to specify the
survival function 𝑃 (𝐿 > 𝑡) of this random variable for 𝑡 ≥ 0. From
reliability theory, it follows that 𝑃 (𝐿 > 𝑡 ∣ 𝑡) = exp

(

− ∫ 𝑡0 𝜆(𝑠) d 𝑠
)

. By
unconditioning, we obtain

𝑃 (𝐿 > 𝑡) = E
[

exp
(

−∫

𝑡

0
𝜆(𝑠) d 𝑠

)]

= exp
(

−∫

𝑡

0
(𝜆0(𝑠) + 𝛼 ln(𝛽 + 𝜂𝑠) − 𝛼 ln 𝛽) d 𝑠

)

= exp
(

𝛼𝑡 − 𝛬0(𝑡)
)

(

𝛽
𝜂𝑡 + 𝛽

)𝛼(𝑡+𝛽∕𝜂)
.

(9)

The second equality uses the following result established in [48]:

E
[

exp
(

−∫

𝑡

0
𝑀(𝑠) d 𝑠

)]

= exp
(

−∫

𝑡

0
(𝛼 ln(𝛽 + 𝑠) − 𝛼 ln 𝛽) d 𝑠

)

= exp(𝛼𝑡)
(

𝛽
𝑡 + 𝛽

)𝛼(𝑡+𝛽)
.

(10)

e refer the reader to Kebir [48] for the proof of this result. By Eq. (9),
he product behaves, in an average sense, as if it had an increasing
eterministic failure rate function given by 𝜆0(𝑠) + 𝛼 ln(𝛽 + 𝜂𝑠) − 𝛼 ln 𝛽.

.3. PM effect

Before determining the cost of a PM policy, we need to model
he effect of PM. There are two commonly used modeling approaches
n the literature: reducing the failure rate of a product indirectly or
irectly [49]. The first approach uses the notion of virtual age and
pplies to the case of deterministic failure rates. By integrating a failure
ate function over intervals of virtual age, we can find the expected
umber of failures. However, when dealing with stochastic failure rates
ue to gamma usage processes, for a usage-based PM policy introduced
n Section 4.2, it is challenging to specify which PM interval a product’s
irtual age after PM falls into. Therefore, we adopt the second modeling
pproach, and specifically the ARI1 model in [49], to ensure analytical
ractability.

We assume that PM can reduce the increment in the failure rate
ince the most recent PM action (rather than the current failure rate
evel) by a constant factor. Let 𝜔𝑖 be the instant at which the 𝑖th PM
ction is performed, with 𝜔0 = 0. Then we have 𝜆(𝜔𝑖+1) = 𝜆(𝜔𝑖) + (1 −
)(𝜆(𝜔−

𝑖+1)−𝜆(𝜔𝑖)), where 0 ≤ 𝜌 ≤ 1 denotes the improvement factor and
(𝜔−

𝑖+1) = lim𝑡→𝜔−𝑖+1
𝜆(𝑡). Solving the recursion yields

(𝜔𝑖) = 𝜆(0) + (1 − 𝜌)
(

𝜆0(𝜔𝑖) + 𝜂𝑀(𝜔𝑖) − 𝜆0(0)
)

( ) (11)
4

= 𝜌𝜆0(0) + (1 − 𝜌) 𝜆0(𝜔𝑖) + 𝜂𝑀(𝜔𝑖) . F
Even though 𝜆(𝜔𝑖) ≠ 𝜆0(𝜔𝑖) + 𝜂𝑀(𝜔𝑖) when PM is present, Eq. (6) can
still be used to derive the failure rate increment 𝜆(𝜔−

𝑖+1)−𝜆(𝜔𝑖). For any
𝑖 ≤ 𝑡 < 𝜔𝑖+1, we have

(𝑡) = 𝜆0(𝑡) + 𝜂𝑀(𝑡) − 𝜌
(

𝜆0(𝜔𝑖) + 𝜂𝑀(𝜔𝑖) − 𝜆0(0)
)

. (12)

This equation indicates that we just need to subtract a portion of the
total increase in the failure rate from the beginning to the last PM
instant.

4. One-dimensional PM policies

In this section, we examine two one-dimensional PM policies, one
based on time and the other based on usage. PM is conducted under a
2-D warranty with an age limit 𝑇 and a usage limit 𝑈 . The costs of
the two policies are closely related to the end of the 2-D warranty.
We let this point be 𝑇 = min

{

𝜏(𝑈 ), 𝑇
}

, where 𝜏(𝑈 ) corresponds to
the time when the product’s usage process first hits 𝑈 . Its probability
distribution function is

𝐹𝑇 (𝑡) = 𝑃
(

𝑇 ≤ 𝑡
)

=

{

𝑃
(

𝜏(𝑈 ) ≤ 𝑡
)

, if 𝑡 < 𝑇 ,
1, if 𝑡 ≥ 𝑇 .

(13)

The manufacturer incurs a fixed cost of 𝑐𝑟 for each repair operation.
If we let 𝐶0 denote the expected repair cost of the manufacturer when
there is no PM, then we have 𝐶0 = 𝑐𝑟E[𝑁(𝑇 )], where

E
[

𝑁
(

𝑇
)

]

= ∫

∞

0
E
[

𝑁
(

𝑇
)

∣ 𝜏(𝑈 ) = 𝑡
]

𝑓𝜏(𝑈 )(𝑡) d 𝑡

= ∫

𝑇

0
E [𝑁(𝑡) ∣ 𝜏(𝑈 ) = 𝑡] 𝑓𝜏(𝑈 )(𝑡) d 𝑡

+ ∫

∞

𝑇
E [𝑁(𝑇 ) ∣ 𝜏(𝑈 ) = 𝑡] 𝑓𝜏(𝑈 )(𝑡) d 𝑡

= ∫

𝑇

0
E
[

∫

𝑡

0

(

𝜆0(𝑠) + 𝜂𝑀(𝑠)
)

d 𝑠
|

|

|

|

𝑀(𝑡) = 𝑈
]

𝑓𝜏(𝑈 )(𝑡) d 𝑡

+ ∫

∞

𝑇
E
[

∫

𝑇

0

(

𝜆0(𝑠) + 𝜂𝑀(𝑠)
)

d 𝑠
|

|

|

|

𝑀(𝑡) = 𝑈
]

𝑓𝜏(𝑈 )(𝑡) d 𝑡

= ∫

𝑇

0 ∫

𝑡

0
E[𝜆0(𝑠) + 𝜂𝑀(𝑠) ∣𝑀(𝑡) = 𝑈 ] d 𝑠𝑓𝜏(𝑈 )(𝑡) d 𝑡

+ ∫

∞

𝑇 ∫

𝑇

0
E[𝜆0(𝑠) + 𝜂𝑀(𝑠) ∣𝑀(𝑡) = 𝑈 ] d 𝑠𝑓𝜏(𝑈 )(𝑡) d 𝑡

= ∫

𝑇

0

(

𝛬0(𝑡) +
𝜂𝑈𝑡
2

)

𝑓𝜏(𝑈 )(𝑡) d 𝑡

+ ∫

∞

𝑇

(

𝛬0(𝑇 ) +
𝜂𝑈𝑇 2

2𝑡

)

𝑓𝜏(𝑈 )(𝑡) d 𝑡.

(14)

n the second equality, we use the law of total expectation. The first
erm on the right-hand side corresponds to the case where the usage
imit is reached before time 𝑇 . In this case, the 2-D warranty ends at
ime 𝜏(𝑈 ), and the number of failures occurring before time 𝜏(𝑈 ) is
ounted. The second term represents the case where the 2-D warranty
xpires at time 𝑇 . The fourth equality follows by interchanging the
rder of conditional expectation and integration. The fifth equality is
btained from Eq. (5). Note that the probability density function for
(𝑈 ) is obtained from Eq. (3) by letting 𝑥 = 𝑈 . The expected number of
ailures occurring by a given time and usage can be derived in a way
imilar to E[𝑁

(

𝑇
)

].

.1. Time-based PM policy

The time-based PM policy we consider is periodic, and PM takes
lace every 𝑇 ∕(𝑛+1) units of time. Under this policy, the 𝑖th PM instant
𝑖 equals 𝑖𝑇 ∕(𝑛 + 1) for 1 ≤ 𝑖 ≤

⌈

(𝑛 + 1)𝑇 ∕𝑇
⌉

− 1. As an illustration,
̂
ig. 1 plots two gamma usage processes when 𝑛 = 2. Since 𝑇 = 𝑇
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Fig. 1. Illustration of the time-based PM policy (𝑛 = 2).

in the case of path 1, the number of PM actions is 𝑛. (Note that the
manufacturer does not perform PM at the end of the 2-D warranty.)
For path 2, this number is less than 𝑛. Although simulated from pure
jump processes, both usage paths still appear to be smooth. However,
there also exist occasional noticeable jumps due to heavy use, which
increase the uncertainties in the cumulative usage and failure rate at
each PM instant.

Since some auto brands (such as BMW, Volvo, and Jaguar) provide
a comprehensive free maintenance program to their customers, we
assume that the manufacturer bears all the PM costs in the warranty
period. The cost of each PM task is denoted as 𝑐𝑝 and is assumed to
be independent of product states. Both the number of PM actions and
the total PM cost are random because the cumulative usage follows a
gamma process. Let 𝐶1(𝑛) be the expected total cost of the time-based
PM policy. This cost consists of the expected repair and PM costs. The
decision variable 𝑛 ≥ 0 is an integer. The cost function 𝐶1(𝑛) can be
written as

𝐶1(𝑛) = 𝑐𝑟E
⎡

⎢

⎢

⎢

⎣

⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−2
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠 + ∫

𝑇
(⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−1
)

𝑇
𝑛+1

𝜆(𝑠) d 𝑠

⎤

⎥

⎥

⎥

⎦

+ 𝑐𝑝
𝑛
∑

𝑖=0

(

𝐹𝜏(𝑈 )

(

(𝑖 + 1)𝑇
𝑛 + 1

)

− 𝐹𝜏(𝑈 )

( 𝑖𝑇
𝑛 + 1

)

)

𝑖

+ 𝑐𝑝
(

1 − 𝐹𝜏(𝑈 )(𝑇 )
)

𝑛.

(15)

he first term in the above equation represents the expected repair
ost and is described in further detail in Appendix. The second and
hird terms correspond to the expected PM cost, and we need to pay
ttention to the time when the usage path first hits the usage limit of
he 2-D warranty. The realized value of 𝑇 determines the number of
M operations performed.

If there is no randomness in usage, a stationary gamma usage
rocess will be reduced to a linear usage process, with its path being
straight line. The slope of this line is referred to as the usage rate

nd is denoted by 𝑟. The constant usage rate 𝑟 is known because this
nformation can be collected by sensors. Given 𝑟, we can express the
umulative usage at time 𝑡 as 𝑀(𝑡) = 𝑟𝑡. The expected total cost of the

time-based PM policy depends on the usage rate 𝑟. When 0 < 𝑟 ≤ 𝑈∕𝑇 ,
5

we have 𝑈
𝐶1(𝑛) = 𝑐𝑝𝑛 + 𝑐𝑟
𝑛
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠

= 𝑐𝑝𝑛 + 𝑐𝑟
𝑛
∑

𝑗=0

(

𝛬0

(

(𝑗 + 1)𝑇
𝑛 + 1

)

− 𝛬0

(

𝑗𝑇
𝑛 + 1

)

+
(2𝑗 + 1)𝜂𝑟𝑇 2

2(𝑛 + 1)2

−
𝜌𝑇
𝑛 + 1

(

𝜆0

(

𝑗𝑇
𝑛 + 1

)

+
𝑗𝜂𝑟𝑇
𝑛 + 1

− 𝜆0(0)
))

.

(16)

The first equality follows from Eq. (15) by noting that 𝑇 = 𝑇 and 𝜏(𝑈 ) =
∕𝑟 ≥ 𝑇 . Similarly, when 𝑟 > 𝑈∕𝑇 , we have 𝑇 = 𝜏(𝑈 ) = 𝑈∕𝑟 < 𝑇 . In

his case, the cost function 𝐶1(𝑛) is given by

1(𝑛) = 𝑐𝑝�̂� + 𝑐𝑟
�̂�−1
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠 + 𝑐𝑟 ∫

𝑈
𝑟

�̂�𝑇
𝑛+1

𝜆(𝑠) d 𝑠

= 𝑐𝑝�̂� + 𝑐𝑟
�̂�−1
∑

𝑗=0

(

𝛬0

(

(𝑗 + 1)𝑇
𝑛 + 1

)

− 𝛬0

(

𝑗𝑇
𝑛 + 1

)

+
(2𝑗 + 1)𝜂𝑟𝑇 2

2(𝑛 + 1)2

−
𝜌𝑇
𝑛 + 1

(

𝜆0

(

𝑗𝑇
𝑛 + 1

)

+
𝑗𝜂𝑟𝑇
𝑛 + 1

− 𝜆0(0)
))

+ 𝑐𝑟
(

𝛬0

(𝑈
𝑟

)

− 𝛬0

( �̂�𝑇
𝑛 + 1

)

+
𝜂𝑟
2

(

𝑈2

𝑟2
− �̂�2𝑇 2

(𝑛 + 1)2

)

− 𝜌
(

𝜆0
( �̂�𝑇
𝑛 + 1

)

+ 𝜂𝑟
( �̂�𝑇
𝑛 + 1

)

− 𝜆0(0)
)(𝑈

𝑟
− �̂�𝑇
𝑛 + 1

))

,

(17)

where �̂� =
⌈

(𝑛+1)𝑈
𝑟𝑇

⌉

− 1 designates the number of PM actions and
̂𝑇 ∕(𝑛 + 1) < 𝜏(𝑈 ) ≤ (�̂� + 1)𝑇 ∕(𝑛 + 1).

4.2. Usage-based PM policy

In addition to the time dimension, we can also characterize a PM
policy using the usage dimension. The usage-based PM policy consid-
ered divides the usage interval [0, 𝑈 ] into 𝑚 + 1 equal parts, making
the amount of usage between two consecutive PM actions 𝑈∕(𝑚 + 1).
The corresponding time interval is of length 𝜏

(

𝑈
𝑚+1

)

, which is the
time when a gamma process starting from zero first hits 𝑈∕(𝑚 + 1).

efine
{

𝜏𝑖
(

𝑈
𝑚+1

)}𝑚+1

𝑖=1
as an independent sequence of such first hitting

imes. Then the 𝑖th PM instant 𝜔𝑖 can be expressed as 𝜔𝑖 = 𝜏
(

𝑖𝑈
𝑚+1

)

=
∑𝑖
𝑗=1 𝜏𝑗

(

𝑈
𝑚+1

)

for 1 ≤ 𝑖 ≤ ⌈(𝑚 + 1)𝑀(𝑇 )∕𝑈⌉ − 1.
We denote by 𝐶2(𝑚) the expected total cost of the usage-based PM

policy. The decision variable 𝑚 ≥ 0 is an integer. The expression for
𝐶2(𝑚) can be written as:

𝐶2(𝑚) = E
[

E
[

repair cost
|

|

|

|

𝜏1
( 𝑈
𝑚 + 1

)

,… , 𝜏𝑚+1
( 𝑈
𝑚 + 1

)

]]

+ 𝑐𝑝
𝑚
∑

𝑖=0

(

𝐹𝑀(𝑇 )

(

(𝑖 + 1)𝑈
𝑚 + 1

)

− 𝐹𝑀(𝑇 )

( 𝑖𝑈
𝑚 + 1

)

)

𝑖

+ 𝑐𝑝
(

1 − 𝐹𝑀(𝑇 )(𝑈 )
)

𝑚,

(18)

here 𝐹𝑀(𝑇 ) is the cumulative density function of the gamma-distri-
uted variable 𝑀(𝑇 ). It is necessary to condition on the sequence of
irst hitting times when calculating the expected repair cost. This ex-
ression can be further expanded, as shown in Appendix. The key idea
n computing the expected PM cost is to determine how many usage
ntervals the gamma process goes through during the 2-D warranty—
hat is, how many times the manufacturer has performed PM. For
xample, we can see from Fig. 2 that the total number of PM actions
s 𝑚 when 𝑀(𝑇 ) > 𝑈 . The figure also reveals that the usage-based
olicy leads to nonperiodic PM schedules. Compared with the time-
ased policy, this policy leaves the manufacturer facing uncertainty
bout PM instants rather than the cumulative usage at each instant.

We next derive the expected total cost of the usage-based PM policy
f there is no randomness involved in the usage process. When 0 < 𝑟 ≤
∕𝑇 , we have
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Fig. 2. Illustration of the usage-based PM policy (𝑚 = 2).

𝐶2(𝑚) = 𝑐𝑝�̂� + 𝑐𝑟
�̂�−1
∑

𝑗=0
∫

(𝑗+1)𝑈
(𝑚+1)𝑟

𝑗𝑈
(𝑚+1)𝑟

𝜆(𝑠) d 𝑠 + 𝑐𝑟 ∫

𝑇

�̂�𝑈
(𝑚+1)𝑟

𝜆(𝑠) d 𝑠

= 𝑐𝑝�̂� + 𝑐𝑟
�̂�−1
∑

𝑗=0

(

𝛬0

(

(𝑗 + 1)𝑈
(𝑚 + 1)𝑟

)

− 𝛬0

(

𝑗𝑈
(𝑚 + 1)𝑟

)

+
(2𝑗 + 1)𝜂𝑟𝑈2

2(𝑚 + 1)2𝑟2

−
𝜌𝑈

(𝑚 + 1)𝑟

(

𝜆0

(

𝑗𝑈
(𝑚 + 1)𝑟

)

+
𝑗𝜂𝑟𝑈

(𝑚 + 1)𝑟
− 𝜆0(0)

))

+ 𝑐𝑟

(

𝛬0(𝑇 ) − 𝛬0

(

�̂�𝑈
(𝑚 + 1)𝑟

)

+
𝜂𝑟
2

(

𝑇 2 − �̂�2𝑈2

(𝑚 + 1)2𝑟2

)

− 𝜌
(

𝜆0

(

�̂�𝑈
(𝑚 + 1)𝑟

)

+ 𝜂𝑟
(

�̂�𝑈
(𝑚 + 1)𝑟

)

− 𝜆0(0)
)

⋅
(

𝑇 − �̂�𝑈
(𝑚 + 1)𝑟

))

,

(19)

where �̂� =
⌈

(𝑚+1)𝑟𝑇
𝑈

⌉

−1 is the number of PM actions and �̂�𝑈∕(𝑚+1) <
𝑟𝑇 ≤ (�̂�+1)𝑈∕(𝑚+1). The first equality can be obtained from Eqs. (18)
nd (A.2) by noting that 𝑀(𝑡) = 𝑟𝑇 ≤ 𝑈 and ∑�̂�

𝑗=1 𝜏𝑗
(

𝑈
𝑚+1

)

< 𝑇 ≤
∑�̂�+1
𝑗=1 𝜏𝑗

(

𝑈
𝑚+1

)

. Similarly, when 𝑟 > 𝑈∕𝑇 , we have 𝑀(𝑡) = 𝑟𝑇 > 𝑈 and
∑𝑚+1
𝑗=1 𝜏𝑗

(

𝑈
𝑚+1

)

= 𝑈∕𝑟 < 𝑇 . In this case, the cost function 𝐶2(𝑚) is given
by

𝐶2(𝑚) = 𝑐𝑝𝑚 + 𝑐𝑟
𝑚
∑

𝑗=0
∫

(𝑗+1)𝑈
(𝑚+1)𝑟

𝑗𝑈
(𝑚+1)𝑟

𝜆(𝑠) d 𝑠

= 𝑐𝑝𝑚 + 𝑐𝑟
𝑚
∑

𝑗=0

(

𝛬0

(

(𝑗 + 1)𝑈
(𝑚 + 1)𝑟

)

− 𝛬0

(

𝑗𝑈
(𝑚 + 1)𝑟

)

+
(2𝑗 + 1)𝜂𝑟𝑈2

2(𝑚 + 1)2𝑟2

−
𝜌𝑈

(𝑚 + 1)𝑟

(

𝜆0

(

𝑗𝑈
(𝑚 + 1)𝑟

)

+
𝑗𝜂𝑟𝑈

(𝑚 + 1)𝑟
− 𝜆0(0)

))

.

6

(20)
Fig. 3. Four cases of the recursive equation for 𝐽 (𝑥, 𝑦).

. 2-D PM policy

This section adds a new dimension to a one-dimensional PM policy.
n real life, PM for some capital-intensive products such as automobiles
s 2-D: Two successive PM actions are separated by a time or usage in-
erval, and the instant of the next action depends on which interval the
sage process first passes through. While 2-D PM is usually offered as a
niform program to all customers, what we consider is a personalized
M service for a specific usage process or individual.

Our model assumes that a 2-D PM policy has a time interval of
∕(𝑛+1) and a usage interval of 𝑈∕(𝑚+1), as is the case with most car
ompanies. The integers 𝑛 ≥ 0 and 𝑚 ≥ 0 are decision variables. This
olicy does not divide the 2-D warranty region into an (𝑛+ 1) × (𝑚+ 1)
rid of cells, but generates a rectangle with length 𝑇 ∕(𝑛+1) and width
∕(𝑚+1) at each PM point to trigger the next PM action (as illustrated

n Fig. 3). It is worth noting that the 2-D policy will reduce to a one-
imensional policy under a linear usage process. Specifically, PM will
lways be carried out in the time dimension if 0 < 𝑟 ≤ (𝑛+1)𝑈

(𝑚+1)𝑇 and in the
usage dimension otherwise. Moreover, one unit of usage can translate
into 1∕𝑟 units of time, and the resulting PM schedule will be periodic.
However, when assuming a gamma usage process, we face uncertainties
in PM instants and the number of PM actions because of the possibility
of performing PM in either dimension.

The expected total cost of the 2-D PM policy is calculated through
the use of dynamic programming. Given that the product’s age is 𝑥 and
cumulative usage is 𝑦 at the 𝑘th PM instant, we define 𝐽𝑘(𝑥, 𝑦) as the
expected total cost to the manufacturer from point (𝑥, 𝑦) to the end of
the 2-D warranty. Note that the expected cost-to-go is independent of 𝑘.
We therefore omit the subscript 𝑘 and use 𝐽 (𝑥, 𝑦) to denote the cost-to-
go function defined over the 2-D warranty region upon PM. In deriving
the recursive equation for 𝐽 (𝑥, 𝑦), we have four cases depending on the
position of (𝑥, 𝑦) relative to the 2-D warranty boundary, as shown in
Fig. 3. As we move from one PM instant to the next, since the total
number of PM actions is uncertain, we need to determine whether and
how the next PM action is triggered.

In region I, i.e., when 𝑛𝑇 ∕(𝑛 + 1) ≤ 𝑥 < 𝑇 and 𝑚𝑈∕(𝑚 + 1) ≤ 𝑦 < 𝑈 ,
the manufacturer will not take any PM actions but instead will just
bear possible repair costs because the distance from point (𝑥, 𝑦) to

either limit of the 2-D warranty is no greater than the length of the
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corresponding PM interval. In this case, the value function 𝐽 (𝑥, 𝑦) can
e computed recursively as follows:

𝐽 (𝑥, 𝑦)

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇−𝑥

0
E
[

∫

𝑥+𝑡

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈
]

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇−𝑥
E
[

∫

𝑇

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈
]

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇−𝑥

0

(

𝛬0(𝑥 + 𝑡) − 𝛬0(𝑥) +
𝜂(𝑈 + 𝑦)𝑡

2
− 𝜌

(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑡
)

× 𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇−𝑥

(

𝛬0(𝑇 ) − 𝛬0(𝑥) + 𝜂𝑦(𝑇 − 𝑥) +
𝜂(𝑈 − 𝑦)(𝑇 − 𝑥)2

2𝑡

− 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

(𝑇 − 𝑥)
)

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡.

(21)

To calculate the expected repair cost, we need to know whether a
gamma process starting from zero hits 𝑈 − 𝑦 for the first time before
time 𝑇 −𝑥 or, equivalently, which limit the usage process hits first. The
second term of the first equation represents the case where the usage
process hits the usage limit first, whereas the third term represents the
case of hitting the age limit first. Note that the condition 𝑀(𝑥+ 𝑡) = 𝑈
s equivalent to 𝜏(𝑈 − 𝑦) = 𝑡.

In region II, i.e., when 𝑛𝑇 ∕(𝑛 + 1) ≤ 𝑥 < 𝑇 and 0 < 𝑦 < 𝑚𝑈∕(𝑚 + 1),
since the distance from point (𝑥, 𝑦) to the age limit is no greater than
the length of the time interval, the manufacturer will not perform PM
based on this dimension, but the possibility for PM still remains in
the other dimension. We need to determine in this region whether the
usage process passes through a usage interval first before reaching the
age limit. If a gamma process starting from zero hits 𝑈∕(𝑚 + 1) for the
first time before time 𝑇 − 𝑥, then the initiated PM task entails a cost of
𝑐𝑝. Otherwise, the manufacturer only incurs repair costs until the end of
the 2-D warranty. For any point in region II, we can express the value
function 𝐽 (𝑥, 𝑦) as follows:

𝐽 (𝑥, 𝑦)

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇−𝑥

0
E
[

∫

𝑥+𝑡

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

𝑇−𝑥

0
𝐽
(

𝑥 + 𝑡, 𝑦 + 𝑈
𝑚 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇−𝑥
E
[

∫

𝑇

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇−𝑥

0

(

𝛬0(𝑥 + 𝑡) − 𝛬0(𝑥) + 𝜂𝑦𝑡 +
𝜂𝑈𝑡

2(𝑚 + 1)

− 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑡
)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

𝑇−𝑥

0
𝐽
(

𝑥 + 𝑡, 𝑦 + 𝑈
𝑚 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇−𝑥

(

𝛬0(𝑇 ) − 𝛬0(𝑥) + 𝜂𝑦(𝑇 − 𝑥) +
𝜂𝑈 (𝑇 − 𝑥)2

2(𝑚 + 1)𝑡

− 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

(𝑇 − 𝑥)
)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡.

(22)
7

B

The second and third terms of the first equation represent the case in
which the usage process first passes through a usage interval, while the
fourth term corresponds to the case where the usage process first hits
the age limit. Since 𝐽 (𝑥, 𝑦) is an expected cost-to-go function, the third
term is not multiplied by the cost parameter 𝑐𝑟.

In region III, i.e., when 0 < 𝑥 < 𝑛𝑇 ∕(𝑛+ 1) and 𝑚𝑈∕(𝑚+ 1) ≤ 𝑦 < 𝑈 ,
the distance between point (𝑥, 𝑦) and the usage limit is insufficient for
PM to be performed based on usage. If a PM action is triggered, then it
must be performed in the time dimension, and the problem proceeds to
the next stage because the 2-D warranty is still in effect. We can write
the recursive equation as

𝐽 (𝑥, 𝑦)

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇
𝑛+1

0
E
[

∫

𝑥+𝑡

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈
]

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇
𝑛+1

E

[

∫

𝑥+ 𝑇
𝑛+1

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈

]

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ ∫

+∞

𝑇
𝑛+1

E
[

𝐽
(

𝑥 + 𝑇
𝑛 + 1

,𝑀
(

𝑥 + 𝑇
𝑛 + 1

))

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈
]

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇
𝑛+1

0

(

𝛬0(𝑥 + 𝑡) − 𝛬0(𝑥) +
𝜂(𝑈 + 𝑦)𝑡

2
− 𝜌

(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑡
)

× 𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇
𝑛+1

(

𝛬0

(

𝑥 + 𝑇
𝑛 + 1

)

− 𝛬0(𝑥) +
𝜂𝑦𝑇
𝑛 + 1

+
𝜂(𝑈 − 𝑦)𝑇 2

2(𝑛 + 1)2𝑡

−
𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑇
𝑛 + 1

)

𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡

+ ∫

+∞

𝑇
𝑛+1

E
[

𝐽
(

𝑥 + 𝑇
𝑛 + 1

,𝑀
(

𝑥 + 𝑇
𝑛 + 1

))

|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑈
]

× 𝑓𝜏(𝑈−𝑦)(𝑡) d 𝑡.

(23)

ote that 𝑈 −𝑦 is the distance between point (𝑥, 𝑦) and the usage limit.
he second term of the first equation indicates that the time required
or the usage path to hit 𝑈−𝑦 for the first time is less than the length of

the time interval, so the 2-D warranty ends before the next PM instant.
The third and fourth terms indicate that a PM action occurs at time
𝑥+𝑇 ∕(𝑛+1). The second argument of 𝐽 (𝑥+𝑇 ∕(𝑛+1),𝑀(𝑥+𝑇 ∕(𝑛+1)))
n the fourth term still involves uncertainty, unlike that of 𝐽 (𝑥 + 𝑡, 𝑦 +
∕(𝑚+1)) in Eq. (22). We do not observe the cumulative usage at time
+𝑇 ∕(𝑛+1), but know that the cumulative usage at time 𝑥+𝑡 is 𝑈 . Given
gamma bridge that begins at 𝑀(𝑥) = 𝑦 and terminates at 𝑀(𝑥+𝑡) = 𝑈 ,

he value of the bridge at time 𝑥+ 𝑇 ∕(𝑛+ 1), 𝑀(𝑥+ 𝑇 ∕(𝑛+ 1)), is equal
o 𝑦 plus 𝑈 − 𝑦 multiplied by a beta random variable with distribution

eta(𝛼𝑇 ∕(𝑛 + 1), 𝛼𝑡 − 𝛼𝑇 ∕(𝑛 + 1)).
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In region IV, i.e. when 0 < 𝑥 < 𝑛𝑇 ∕(𝑛 + 1) and 0 < 𝑦 < 𝑚𝑈∕(𝑚 + 1),
PM is possible along both the time and usage dimensions. In this case,
the recursive equation is written as

𝐽 (𝑥, 𝑦)

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇
𝑛+1

0
E
[

∫

𝑥+𝑡

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

×
|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

𝑇
𝑛+1

0
𝐽
(

𝑥 + 𝑡, 𝑦 + 𝑈
𝑚 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇
𝑛+1

E

[

∫

𝑥+ 𝑇
𝑛+1

𝑥

(

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
))

d 𝑠

|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

+∞

𝑇
𝑛+1

E
[

𝐽
(

𝑥 + 𝑇
𝑛 + 1

,𝑀
(

𝑥 + 𝑇
𝑛 + 1

))

|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

⋅ 𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

= 𝑐𝑝 + 𝑐𝑟 ∫

𝑇
𝑛+1

0

(

𝛬0(𝑥 + 𝑡) − 𝛬0(𝑥) + 𝜂𝑦𝑡 +
𝜂𝑈𝑡

2(𝑚 + 1)

− 𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑡
)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

𝑇
𝑛+1

0
𝐽
(

𝑥 + 𝑡, 𝑦 + 𝑈
𝑚 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇
𝑛+1

(

𝛬0

(

𝑥 + 𝑇
𝑛 + 1

)

− 𝛬0(𝑥) +
𝜂𝑦𝑇
𝑛 + 1

+
𝜂𝑈𝑇 2

2(𝑚 + 1)(𝑛 + 1)2𝑡

−
𝜌
(

𝜆0(𝑥) + 𝜂𝑦 − 𝜆0(0)
)

𝑇
𝑛 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

+∞

𝑇
𝑛+1

E
[

𝐽
(

𝑥 + 𝑇
𝑛 + 1

,𝑀
(

𝑥 + 𝑇
𝑛 + 1

))

|

|

|

|

𝑀(𝑥 + 𝑡) = 𝑦 + 𝑈
𝑚 + 1

]

⋅ 𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡.

(24)

e can determine whether the usage process first traverses a time or
sage interval by comparing the first hitting time of 𝑈∕(𝑚 + 1) against
∕(𝑛+1). If the former is smaller than the latter, then the next PM action
ill take place at point (𝑥+ 𝑡, 𝑦+𝑈∕(𝑚+1)), as captured by the second
nd third terms of the first equation. Otherwise, the next PM action
ill occur at point (𝑥+ 𝑇 ∕(𝑛+ 1),𝑀(𝑥+ 𝑇 ∕(𝑛+ 1))), as indicated by the

fourth and fifth terms. The cumulative usage 𝑀(𝑥+𝑇 ∕(𝑛+1)) is equal to
𝑦 plus 𝑈∕(𝑚+1) multiplied by a beta random variable with distribution
Beta(𝛼𝑇 ∕(𝑛+1), 𝛼𝑡−𝛼𝑇 ∕(𝑛+1)). Finally, the boundary conditions of the
ynamic program are given by 𝐽 (𝑇 , ⋅ ) = 0 and 𝐽 ( ⋅ , 𝑈 ) = 0.

Our ultimate goal is to find the expected total cost of the 2-D PM
olicy, which we denote by 𝐶3(𝑛, 𝑚). For a gamma usage process that

starts at point (0, 0) and ends at the warranty boundary, we use the
value function 𝐽 (𝑥, 𝑦) to express 𝐶 (𝑛, 𝑚) as
8

3

𝐶3(𝑛, 𝑚)

= 𝑐𝑟 ∫

𝑇
𝑛+1

0
E
[

∫

𝑡

0

(

𝜆0(𝑠) + 𝜂𝑀(𝑠)
)

d 𝑠
|

|

|

|

𝑀(𝑡) = 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

𝑇
𝑛+1

0
𝐽
(

𝑡, 𝑈
𝑚 + 1

)

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ 𝑐𝑟 ∫

+∞

𝑇
𝑛+1

E

[

∫

𝑇
𝑛+1

0

(

𝜆0(𝑠) + 𝜂𝑀(𝑠)
)

d 𝑠
|

|

|

|

𝑀(𝑡) = 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡

+ ∫

+∞

𝑇
𝑛+1

E
[

𝐽
( 𝑇
𝑛 + 1

,𝑀
( 𝑇
𝑛 + 1

))

|

|

|

|

𝑀(𝑡) = 𝑈
𝑚 + 1

]

𝑓
𝜏
(

𝑈
𝑚+1

)(𝑡) d 𝑡
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)(𝑡) d 𝑡.

(25)

n the fourth term of the first equation, 𝑀(𝑇 ∕(𝑛+1)) is equal to 𝑈∕(𝑚+1)
imes a beta random variable with distribution Beta(𝛼𝑇 ∕(𝑛 + 1), 𝛼𝑡 −
𝑇 ∕(𝑛 + 1)). It is worth noting that PM is not performed at point (0, 0),
nd hence the manufacturer does not start out by incurring a cost of
𝑝. After discretizing the 2-D warranty region, we compute the values
f 𝐽 (𝑥, 𝑦) in a recursive manner. Then, for given nonnegative integers
and 𝑚, we calculate the expected total cost 𝐶3(𝑛, 𝑚) from Eq. (25).

inally, we find the optimal 2-D PM policy (𝑛∗, 𝑚∗) via a grid search
ver the parameter space.

We can also use dynamic programming to obtain the expected total
osts of the two one-dimensional PM policies studied in the previous
ection. When PM is time-based, we let 𝑚 = 0, in which case the usage
nterval of 2-D PM is 𝑈 . Since we do not perform PM at the end of
he 2-D warranty, the usage dimension does not come into play. Given
= 0, only the conditions in the first and third cases for 𝐽 (𝑥, 𝑦) hold.

ased on this value function, an alternative way of evaluating 𝐶1(𝑛) is
resented below:
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( 𝑇
𝑛 + 1

))

|

|

|

|

𝑀(𝑡) = 𝑈
]

𝑓𝜏(𝑈 )(𝑡) d 𝑡
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𝑓𝜏(𝑈 )(𝑡) d 𝑡.

(26)

In the third term of the first equation, 𝑀(𝑇 ∕(𝑛 + 1)) is equal to 𝑈
multiplied by a beta random variable with distribution Beta(𝛼𝑇 ∕(𝑛 +
1), 𝛼𝑡−𝛼𝑇 ∕(𝑛+1)). Under the usage-based PM policy, we let 𝑛 = 0. Of the
four cases for 𝐽 (𝑥, 𝑦), only the first and second apply. Since Eq. (A.2) is

challenging to compute when 𝑚 ≥ 2, we proceed as follows to evaluate
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𝐶

Fig. 4. Sample paths of the gamma usage process (𝛼 = 𝛽 = 8.333).

2(𝑚):
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(27)

It is straightforward to verify that 𝐶1(𝑛) = 𝐶3(𝑛, 0) and 𝐶2(𝑚) = 𝐶3(0, 𝑚).
Thus, the time-based and usage-based PM policies are special cases of
the 2-D PM policy.

6. Numerical study

In this section, we present the results of a numerical study to
illustrate how the variability of a usage process affects the performance
of the three PM policies. We use the following values for the model
parameters: 𝑇 = 12, 𝑈 = 12, 𝜆0(𝑡) = 0.05, 𝜂 = 0.1, 𝜌 = 0.9, 𝑐𝑝 = 100, and
𝑐𝑟 = 300. To measure the process variability, we choose the coefficient
of variation of 𝑀(𝑇 ), defined by 𝐶𝑉 =

√

Var[𝑀(𝑇 )]∕E[𝑀(𝑇 )]. The
underlying assumption is that as the level of use increases, the range of
fluctuation gets broader, and the occurrence of larger jumps becomes
more likely. Since 𝑀(𝑇 ) ∼ Gamma(𝛼𝑇 , 𝛽), given the values of E[𝑀(𝑇 )]
and 𝐶𝑉 , we have 𝛼 = 1∕(𝐶𝑉 2𝑇 ) and 𝛽 = 1∕(𝐶𝑉 2E[𝑀(𝑇 )]). Specifically,
we let 𝐶𝑉 = 0.1 and E[𝑀(𝑇 )] = 𝑟𝑇 . Fig. 4 plots five sample paths of the
gamma usage process with E[𝑀(𝑇 )] = 12. Note that only one sample
path can be observed in real-world scenarios. Additionally, we find that
calculating the usage rate 𝑟 using the usage at the last failure may lead
to significant errors.

To explore the effect of the variability, we consider for illustration
the cases 𝑛 = 3 and 𝑚 = 3. When there is no randomness (i.e., 𝐶𝑉 = 0),
we have 𝑀(𝑡) = 𝑟𝑡. The expected total cost of the time-based PM policy
can be obtained from Eq. (15) and is depicted as a function of 𝑟 in
9

Fig. 5(a). For 𝐶𝑉 = 0, the cost curve first increases due to the effect
of usage and then decreases because the 2-D warranty ends earlier.
Beyond a certain point, this curve increases again because the last PM
action becomes undesirable. The number of PM actions is reduced by
one at 𝑟 = 1.333, causing a sharp drop in the cost. For 𝐶𝑉 = 0.1, we
see that the variability leads to a smooth cost curve. The usage rate and
warranty end time continue to be the main influencing factors. Fig. 5(b)
presents the percentage error between the costs in these two cases and
demonstrates the existence of both overestimation and underestimation
errors. In Fig. 6, a similar analysis can be done for the expected total
cost of the usage-based PM policy. Note that when 𝑚 ≥ 3, we need
to determine this cost by solving the dynamic program because it is
impractical to compute the high-dimensional integrals in Eq. (A.2).

Fig. 7 demonstrates the impact of the process variability on PM
schedules under the 2-D PM policy. Recall that without any variability,
the policy reduces to a one-dimensional policy, as represented by the
dotted lines in the two subplots. When the randomness is present, we
calculate the average number of PM actions and the percentage of
usage-based PM actions over 10,000 usage paths. The left plot shows
that the closer the usage rate is to (𝑛+1)𝑈

(𝑚+1)𝑇 , the higher the average
number of PM actions by virtue of an additional PM point near the
2-D warranty boundary. As seen in the right plot, another effect of
the randomness is that the closer the usage rate is to (𝑛+1)𝑈

(𝑚+1)𝑇 , the more
likely it is that PM will be performed based on the other dimension.
Fig. 8 displays the expected total cost of the 2-D PM policy. For small
and large values of 𝑟, since PM schedules are almost one-dimensional,
the percentage error in Fig. 8(b) should be roughly equal to that in
Figs. 5(b) and 6(b), respectively. For medium 𝑟, performing one more
PM action generally increases the manufacturer’s expected total cost,
and the percentage error depends on the benefit of this action.

Fig. 9 compares the optimal costs of the two one-dimensional PM
policies in the absence of the randomness. In Fig. 9(a), when 0 <
𝑟 ≤ 𝑈∕𝑇 , both curves increase with the usage rate, and the time-
based policy is less costly than the usage-based policy; however, when
𝑟 > 𝑈∕𝑇 , the curves are both decreasing and the comparison result
is reversed. When they overlap, the PM schedules resulting from the
two one-dimensional policies are the same. The minimum of the two
costs is the optimal cost of the 2-D PM policy. Fig. 10 shows the
cost difference when the randomness is present. It is interesting to
observe that the process variability does not change the comparison
result. Although a one-dimensional policy is a special case of a 2-D
policy, for almost all values of 𝑟, the optimal 2-D policy is degenerate,
indicating that there is little cost benefit to be gained from performing
2-D PM as a result of additional PM points near the warranty boundary.
However, the situation may be different when the manufacturer only
bears a portion of the PM cost through cost-sharing programs, and the
customer is responsible for the remaining PM visits during the warranty
period [50]. 2-D PM may also benefit the manufacturer when product
usage is highly variable or when uncertainty regarding customer types
arises. These are some of the reasons why 2-D PM is so prevalent in the
automotive industry.

To compare uniform and personalized 2-D PM policies, we examine
the manufacturer’s expected total cost at the population level, as de-
tailed in Table 2. We first normalize the size of the customer population
to one and then consider the following two usage distributions: the
first is 𝑟 ∼ 𝑈 [0.5, 1.5] with E[𝑟] = 1 and Var[𝑟] = 0.083; the second
is log 𝑟 ∼ 𝑁(0.0984, 0.582) with E[𝑟] = 1.21 and Var[𝑟] = 0.586. For
uniform PM, we first compute the population cost for each (𝑛, 𝑚) and
then minimize over (𝑛, 𝑚), while for personalized PM, we first minimize
over (𝑛, 𝑚) for each 𝑟 and then compute the population cost. When
𝐶𝑉 = 0, the optimal uniform policies under the two distributions are
both (𝑛∗, 𝑚∗) = (3, 3). The more dispersed the usage rate distribution, the
larger the percentage cost reduction. When the randomness exists, we
have (𝑛∗, 𝑚∗) = (2, 3) and (3, 2), respectively. More benefits are achieved
because uniform PM does not allow the degeneration of the optimal 2-
D policy. We also observe that the assumption of constant usage rates
leads to underestimation errors.
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Fig. 5. Effect of process variation on 𝐶1(𝑛) when 𝑛 = 3.
Fig. 6. Effect of process variation on 𝐶2(𝑚) when 𝑚 = 3.
Fig. 7. Effect of process variation on PM schedules when 𝑛 = 3 and 𝑚 = 3 (10,000 sample paths).
Table 2
Manufacturer’s costs for uniform and personalized 2-D PM under two usage rate
distributions.

𝐶𝑉 Uniform PM Personalized PM Cost reduction

𝑟 ∼ 𝑈 [0.5, 1.5]
0 1010.862 1009.748 0.11%
0.1 1023.089 1010.504 1.25%

log 𝑟 ∼ 𝑁(0.0984, 0.582)
0 907.897 896.524 1.23%
0.1 915.335 900.281 1.64%
10
7. Conclusion

In this paper, we consider a manufacturer adopting sensor tech-
nology to continuously monitor the usage process of a product that is
sold with a 2-D warranty. To account for the random nature of usage,
we assume that the cumulative usage of the product follows a gamma
process. Using the concepts of first hitting times, gamma bridges, and
doubly stochastic Poisson processes, we formulate a dynamic program-
ming model to determine the expected total costs of three PM policies
under the 2-D warranty. Through numerical experiments, we show how
their expected total costs are affected by the randomness of the usage
process. We also find that the optimal 2-D PM policy degenerates into a

time- or usage-based policy when the manufacturer incurs all PM costs.
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Fig. 8. Effect of process variation on 𝐶3(𝑛, 𝑚) when 𝑛 = 3 and 𝑚 = 3.
Fig. 9. Comparison between the optimal costs of the PM policies (𝐶𝑉 = 0).
Fig. 10. Comparison between the optimal costs of the PM policies (𝐶𝑉 = 0.1).
Our proposed model has some limitations that suggest directions for
uture research. The first issue relates to the validity of the gamma pro-
ess assumption. A possible extension would be to test it on real-world
ata by checking whether the shape function is linear and whether the
azards model is additive. Usage paths tend to vary significantly across
roduct units. To reflect the heterogeneity in usage, a gamma process
odel with random effects needs to be developed [51].

Second, we derive the optimal PM policies for given parameters of
gamma usage process. These parameters, however, may be unknown
11
in advance. For estimation purposes, manufacturers can use sensors
to track a product’s usage process over a period of time before the
first PM action is triggered. When usage uncertainty unfolds over time,
investigating dynamic PM policies is a promising research direction.
Such policies require manufacturers to periodically update the process
parameters (e.g., in a Bayesian framework), resolve the problem, and
adjust PM schedules accordingly.

Third, when the cumulative usage at failure is strongly correlated
with age, a unidimensional failure rate function with respect to time is
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( 𝑗
∑

ℎ=1
𝑡ℎ

)

=
𝑗𝑈
𝑚 + 1

,

𝑀

(𝑗+1
∑

ℎ=1
𝑡ℎ

)

=
(𝑗 + 1)𝑈
𝑚 + 1

]

d 𝑠

}

𝑓𝜏1 (𝑡1)…𝑓𝜏𝑚+1 (𝑡𝑚+1) d 𝑡𝑚+1 …d 𝑡1

= 𝑐𝑟 ∫

∞

𝑇

(

𝛬0(𝑇 ) +
𝜂𝑈𝑇 2

2(𝑚 + 1)𝑡1

)

𝑓𝜏1 (𝑡1) d 𝑡1 + 𝑐𝑟
𝑚
∑

𝑖=1
∫

𝑇

0 ∫

𝑇−𝑡1

0
⋯∫

𝑇−
∑𝑖−1
𝑗=1 𝑡𝑗

0 ∫

∞

𝑇−
∑𝑖
𝑗=1 𝑡𝑗

{

𝛬0(𝑇 ) +
𝜂𝑈𝑡1

2(𝑚 + 1)

+
(1 − 𝜌)𝜂𝑈

∑𝑖−1
𝑗=1 𝑗𝑡𝑗+1

𝑚 + 1
+
𝜂𝑈

∑𝑖−1
𝑗=1 𝑡𝑗+1

2(𝑚 + 1)
− 𝜌

𝑖−1
∑

𝑗=1
𝑡𝑗+1𝜆0

( 𝑗
∑

ℎ=1
𝑡ℎ

)

+
𝑖𝜂𝑈 (𝑇 −

∑𝑖
ℎ=1 𝑡ℎ)

𝑚 + 1
+
𝜂𝑈

(

𝑇 2 + (
∑𝑖
ℎ=1 𝑡ℎ)

2)

2(𝑚 + 1)𝑡𝑖+1

−
𝜂𝑈𝑇

∑𝑖
ℎ=1 𝑡ℎ

(𝑚 + 1)𝑡𝑖+1
− 𝜌

(

𝜆0

( 𝑖
∑

ℎ=1
𝑡ℎ

)

+
𝑖𝜂𝑈
𝑚 + 1

)(

𝑇 −
𝑖

∑

ℎ=1
𝑡ℎ

)

+ 𝜌𝜆0(0)(𝑇 − 𝑡1)

}

𝑓𝜏1 (𝑡1)…𝑓𝜏𝑖+1 (𝑡𝑖+1) d 𝑡𝑖+1 …d 𝑡1

+ 𝑐𝑟 ∫

𝑇

0 ∫

𝑇−𝑡1

0
⋯∫

𝑇−
∑𝑚
𝑗=1 𝑡𝑗

0

(

𝛬0

(𝑚+1
∑

ℎ=1
𝑡ℎ

)

+
𝜂𝑈𝑡1

2(𝑚 + 1)
+

(1 − 𝜌)𝜂𝑈
∑𝑚
𝑗=1 𝑗𝑡𝑗+1

𝑚 + 1
+
𝜂𝑈

∑𝑚
𝑗=1 𝑡𝑗+1

2(𝑚 + 1)

− 𝜌
𝑚
∑

𝑗=1
𝑡𝑗+1𝜆0

( 𝑗
∑

ℎ=1
𝑡ℎ

)

+ 𝜌𝜆0(0)
𝑚
∑

𝑗=1
𝑡𝑗+1

)

𝑓𝜏1 (𝑡1)…𝑓𝜏𝑚+1 (𝑡𝑚+1) d 𝑡𝑚+1 …d 𝑡1.

(A.2)

Box I.
n adequate model to use. However, for the weakly correlated case, it
s better to consider a distribution of time and usage to failure before
mplementing a 2-D PM policy. After obtaining a 2-D failure distribu-
ion under a gamma usage process, one could apply 2-D renewal theory
o the study of preventive replacement for nonrepairable products.

RediT authorship contribution statement

Shizhe Peng: Writing – review & editing, Writing – original draft,
ethodology, Investigation, Formal analysis, Conceptualization. Wei
12
Jiang: Writing – review & editing, Supervision, Funding acquisition,
Conceptualization. Wenpo Huang: Writing – review & editing, Project
administration, Funding acquisition, Conceptualization, Validation.
Qinglin Luo: Software, Investigation, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.



Reliability Engineering and System Safety 242 (2024) 109743S. Peng et al.

𝑛
e
o
e

c
e

b
t
c
b
0
E
i
w

R

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank the associate editor and anonymous
reviewers for their constructive comments. This work was supported by
the National Science Foundation of China [grant numbers 72171064,
71831006]; the Humanities and Social Science Fund of Ministry of Edu-
cation of the People’s Republic of China [grant number 20YJC910006];
and the Zhejiang Provincial Natural Science Foundation of China [grant
number LZ20G010001].

Appendix

In this appendix, we derive explicit expressions for the expected
repair costs of the two one-dimensional PM policies. The expected
repair cost in Eq. (15) can be further written as follows:

𝑐𝑟E
⎡

⎢

⎢

⎢

⎣

⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−2
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠 + ∫

𝑇
(⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−1
)

𝑇
𝑛+1

𝜆(𝑠) d 𝑠

⎤

⎥

⎥

⎥

⎦

= 𝑐𝑟 ∫

∞

0
E
⎡

⎢

⎢

⎢

⎣

⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−2
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠

+ ∫

𝑇
(⌈

(𝑛+1)𝑇 ∕𝑇
⌉

−1
)

𝑇
𝑛+1

𝜆(𝑠) d 𝑠
|

|

|

|

𝜏(𝑈 ) = 𝑡

⎤

⎥

⎥

⎥

⎦

𝑓𝜏(𝑈 )(𝑡) d 𝑡

= 𝑐𝑟
𝑛
∑

𝑖=0
∫

(𝑖+1)𝑇
𝑛+1

𝑖𝑇
𝑛+1

E

[ 𝑖−1
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠 + ∫

𝑡

𝑖𝑇
𝑛+1

𝜆(𝑠) d 𝑠

×
|

|

|

|

𝜏(𝑈 ) = 𝑡

]

𝑓𝜏(𝑈 )(𝑡) d 𝑡 + 𝑐𝑟 ∫

∞

𝑇
E

[ 𝑛
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

𝜆(𝑠) d 𝑠

|

|

|

|

𝜏(𝑈 ) = 𝑡

]

𝑓𝜏(𝑈 )(𝑡) d 𝑡

= 𝑐𝑟
𝑛
∑

𝑖=0
∫

(𝑖+1)𝑇
𝑛+1

𝑖𝑇
𝑛+1

( 𝑖−1
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

E
[

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0

(

𝑗𝑇
𝑛 + 1

)

+𝜂𝑀
(

𝑗𝑇
𝑛 + 1

)

− 𝜆0(0)
)

|

|

|

|

𝑀(𝑡) = 𝑈
]

d 𝑠

+ ∫

𝑡

𝑖𝑇
𝑛+1

E
[

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0
( 𝑖𝑇
𝑛 + 1

)

+ 𝜂𝑀
( 𝑖𝑇
𝑛 + 1

)

− 𝜆0(0)
)

×
|

|

|

|

𝑀(𝑡) = 𝑈
]

d 𝑠

)

𝑓𝜏(𝑈 )(𝑡) d 𝑡

+ 𝑐𝑟 ∫

∞

𝑇

( 𝑛
∑

𝑗=0
∫

(𝑗+1)𝑇
𝑛+1

𝑗𝑇
𝑛+1

E
[

𝜆0(𝑠) + 𝜂𝑀(𝑠) − 𝜌
(

𝜆0

(

𝑗𝑇
𝑛 + 1

)

+ 𝜂𝑀
(

𝑗𝑇
𝑛 + 1

)

− 𝜆0(0)
)

|

|

|

|

𝑀(𝑡) = 𝑈
]

d 𝑠
)

𝑓𝜏(𝑈 )(𝑡) d 𝑡

= 𝑐𝑟
𝑛
∑

𝑖=0
∫

(𝑖+1)𝑇
𝑛+1

𝑖𝑇
𝑛+1

(

𝛬0(𝑡) +
𝜂𝑈𝑡
2

+
𝑖(𝑖 + 1)𝜌𝜂𝑈𝑇 2

2(𝑛 + 1)2𝑡
−
𝑖𝜌𝜂𝑈𝑇
𝑛 + 1

−
𝜌𝑇
𝑛 + 1

𝑖−1
∑

𝑗=0
𝜆0

(

𝑗𝑇
𝑛 + 1

)

− 𝜌
(

𝑡 − 𝑖𝑇
𝑛 + 1

)

𝜆0
( 𝑖𝑇
𝑛 + 1

)

+𝜌𝑡𝜆0(0)

)

𝑓𝜏(𝑈 )(𝑡) d 𝑡 + 𝑐𝑟 ∫

∞

𝑇

(

𝛬0(𝑇 ) +
𝜂𝑈𝑇 2

2𝑡

−
𝜌𝑇
𝑛 + 1

𝑛
∑

𝜆0

(

𝑗𝑇
𝑛 + 1

)

−
𝑛𝜌𝜂𝑈𝑇 2

2(𝑛 + 1)𝑡
+ 𝜌𝑇𝜆0(0)

)

𝑓𝜏(𝑈 )(𝑡) d 𝑡.
13

𝑗=0
(A.1)

In the first equality, we condition on the first hitting time of 𝑈 . In the
second equality, according to the PM instants, the integration interval
[0,+∞) is divided into 𝑛+2 subintervals in order to determine the value
of

⌈

(𝑛 + 1)𝑇 ∕𝑇
⌉

− 1 (the number of PM actions) associated with each
subinterval. As an example, if 𝑖𝑇 ∕(𝑛+1) < 𝜏(𝑈 ) ≤ (𝑖+1)𝑇 ∕(𝑛+1), 0 ≤ 𝑖 ≤
, then 𝑖 PM actions are performed over the warranty period. The third
quality follows from interchanging the expectation and integration
perations and the fact that 𝜏(𝑈 ) = 𝑡 implies 𝑀(𝑡) = 𝑈 . The fourth
quality follows from Eq. (5) given that 𝑀(0) = 0 and 𝑀(𝑡) = 𝑈 .

Next, we evaluate the expected repair cost in Eq. (18). This cost
an be written as Eq. (A.2) is given in Box I. In the first equality, the
vents {

∑𝑖
𝑗=1 𝜏𝑗 < 𝑇 ≤

∑𝑖+1
𝑗=1 𝜏𝑗}, 0 ≤ 𝑖 ≤ 𝑚 + 1, form a partition of the

sample space. The first term represents the expected repair cost when
no PM effort is exerted because the usage process does not hit 𝑈∕(𝑚+1)
efore time 𝑇 . In the second term, if ∑𝑖

𝑗=1 𝜏𝑗 < 𝑇 ≤
∑𝑖+1
𝑗=1 𝜏𝑗 , then 𝑖 is

he number of PM actions performed before time 𝑇 . To calculate the
onditional expectations in the second equality, we construct a gamma
ridge that is tied down at time ∑𝑗

ℎ=1 𝑡ℎ and time ∑𝑗+1
ℎ=1 𝑡ℎ for any

≤ 𝑗 ≤ 𝑚. The third equality follows from tedious calculations using
q. (5). Note that this expected repair cost has a closed-form expression
nvolving multiple integrals. Because of the computational difficulty,
e will resort to a dynamic programming model of usage-based PM.
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