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A B S T R A C T

In this paper, we present a new cost-sharing preventive maintenance (PM) program for a product protected
by a two-dimensional warranty. The product is preventively maintained by its manufacturer in the warranty
period and by a customer in the post-warranty period. To better coordinate their decisions, the cost of PM
during the warranty period is borne jointly by both parties based on a fixed ratio. We propose a new way
of designing such a cost-sharing PM program by using the customer’s expected post-warranty cost. We find a
failure intensity threshold that determines whether the customer should carry out PM at the beginning of the
post-warranty period. It is shown that cost sharing can reduce the failure intensity at this point, which in turn
can reduce the customer’s expected total cost. Given a specific usage rate of the product, we then derive the
optimal cost-sharing ratio from the customer’s perspective. In the numerical study, we examine the effect of
usage rate on the optimal cost-sharing ratio as well as the benefits gained from cost sharing.
1. Introduction

Many capital-intensive products, such as commercial vehicles and
industrial machinery, come with a two-dimensional (2-D) warranty
(Wang and Xie, 2018). This type of warranty specifies its protection
limits in terms of both age and usage (e.g., three years and 36,000 miles
for some commercial vehicles); it lasts until either of these two limits is
reached. Because of the imposed usage limit, a 2-D warranty can protect
manufacturers against excessive failures from heavy users. If a product
fails under warranty, then its manufacturer has to pay the cost of repair
or replacement (Jack and Van der Duyn Schouten, 2000). Warranty
redemption costs in many industries still remain high. For example,
in 2019, automakers worldwide spent roughly 2.5% of their total
revenue—equivalent to $49.4 billion—on warranty repairs (Warranty
Week, 2020).

High warranty costs force manufacturers to improve quality and re-
liability of their products (Priest, 1981). This is known as the incentive
mechanism of warranties on the firm side (Cooper and Ross, 1985).
Hyundai Motor provides a great example. In 1999, it extended the
powertrain warranty on its cars in the U.S. from 5 years/60,000 miles to
10 years/100,000 miles. To avoid paying too much for warranty claims,
Hyundai invested heavily in a quality improvement program that was
implemented in a top-down manner (Forbes, 2005). Another way to
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1 Free car maintenance programs. http://static.ed.edmunds-media.com/unversioned/img/pdf/free.vehicle.maintenance.programs/free.vehicle.maint.5.pdf.

reduce warranty expenses is to adopt a preventive maintenance (PM)
program for warranted products (Alqahtani et al., 2019). Manufacturers
have a strong incentive to do so because PM can reduce the chance of
a product failing in the warranty period. In practice, PM under new-
car warranty, such as oil changes, is generally recommended to be
performed at certain time or mileage intervals.

Proper maintenance is critical for keeping products in good working
condition; however, it usually comes at a significant cost. Manufac-
turers can transfer a portion of the cost to customers by offering
cost-sharing PM programs. For instance, while some auto brands, includ-
ing Hyundai and BMW, offer several years of free maintenance, others,
such as Audi and Lexus, only cover the first one or two maintenance
visits in the warranty period.1 Customers are required to pay for the
remaining visits and adhere to the maintenance schedule specified in
the owner’s manual because lack of maintenance may void their war-
ranties. To get a repair approved, customers have to go to an authorized
service center or independent workshop for regular maintenance.

Motivated by the aforementioned practices, this paper aims to
design a new cost-sharing PM program for products sold under 2-D
warranty. In this program, the cost of PM during the warranty period
is borne jointly by a manufacturer and a customer. We formulate a
sequential game model in which the customer first announces a cost-
sharing ratio and then the manufacturer decides on the PM schedule in
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the warranty period. This schedule dictates the product failure intensity
at the end of the 2-D warranty, which further affects the customer’s PM
decision in the post-warranty period. Our model is intended to highlight
the role of a cost-sharing ratio in coordinating PM decisions over the
product life cycle. We show that both parties benefit from cost-sharing
PM in the sense that their expected total costs are reduced relative
to the scenario without cost sharing. For the manufacturer, different
product usage rates lead to different percentage cost reductions.

The remainder of this paper is organized as follows. Section 2
reviews the relevant literature. Section 3 formulates the manufacturer’s
scheduling problem in the warranty period. Section 4 analyzes the
customer’s PM planning problem in the post-warranty period, given the
failure intensity at the beginning of this period. Section 5 optimizes
the cost-sharing ratio for the customer. Section 6 presents a numerical
study to illustrate the benefits of sharing PM costs. Section 7 concludes
the paper with a summary and suggestions for future research. All
proofs are relegated to Appendix A.

2. Literature review

There is extensive literature on maintenance planning problems in
the context of warranties (see Shafiee and Chukova, 2013, for a detailed
overview). Our paper is related to the recent literature investigating
PM under 2-D warranties. A review of this stream of research can be
found in Wang and Xie (2018). Most existing studies focus on designing
optimal PM policies under 2-D base warranties (see, e.g., Wang and
Su, 2016; Peng et al., 2021; Wang et al., 2020), while Shahanaghi
et al. (2013) and Huang et al. (2017) optimize PM policies implemented
under 2-D extended warranties. Several others consider two-stage main-
tenance problems and study PM scheduling in both base and extended
warranty periods (see, e.g., Wang et al., 2015; Su and Wang, 2016;
Wang et al., 2017; Li et al., 2019). The start and end points of an
extended warranty period are dependent on product usage rate. In
addition, following the expiration of a 2-D warranty, Park et al. (2018)
determine a PM policy that minimizes the expected cost rate over the
product life cycle. In this paper, our focus is on PM scheduling over
base warranty and post-warranty periods.

Most research on PM planning under 2-D warranties concentrates
on periodic PM policies because they are easy for manufacturers to
manage and for customers to follow. Nonperiodic PM policies have
been studied by Huang et al. (2013, 2017), and Peng et al. (2021),
among others. Huang et al. (2017) establish a procedure for customiz-
ing PM services in the 2-D extended warranty period based on each
customer’s usage rate in the base warranty period. Peng et al. (2021)
propose a usage-dependent threshold policy for PM when customer
usage rates are random and dynamic. Huang et al. (2013) optimize
the two parameters of a 2-D warranty when PM is performed when-
ever product reliability falls below a certain level. In this work, the
customer’s optimal PM schedule can be nonperiodic, depending on the
failure intensity at the end of the 2-D warranty.

In practice, PM costs can be paid by the manufacturer (e.g., Sha-
hanaghi et al., 2013; Peng et al., 2021), the customer (Huang and Yen,
2009), or both of them. The literature on maintenance models with
cost sharing is quite limited. Cost-sharing PM typically includes a fixed
sharing ratio (Huang et al., 2017; He et al., 2020) or a sequence of pro-
rata shares (Wang and Su, 2016; Wang et al., 2017). Maintenance cost
sharing has several advantages over the first two payment mechanisms.
It can reduce the manufacturer’s repair costs (Huang et al., 2017; Dai
et al., 2020) and the customer’s downtime losses (Zheng et al., 2020);
in addition, it also helps to achieve channel coordination in the context
of maintenance outsourcing (Tarakci et al., 2006).

Our work contributes to the literature in three ways. First, we
develop a new cost-sharing PM model for managing the product life
cycle by incorporating the customer’s expected total cost over the
post-warranty period. In contrast, previous research only considers the
2

customer’s profits from PM activities (Wang et al., 2017) or losses
from downtime (Zheng et al., 2020) during the base warranty period.
Second, little attention has been paid to how the failure intensity at the
end of the base warranty affects the customer’s PM schedule in the post-
warranty period. We show that there exists a threshold on this failure
intensity above which a PM action should be performed. Third, we find
that offering customized cost-sharing PM programs to customers with
distinct usage rates is a win–win strategy. Such programs can be used
by manufacturers as a way of gaining competitive advantages.

3. The manufacturer’s scheduling problem

We consider a manufacturer providing customized PM for a product
covered by a 2-D warranty. Of the total PM cost in the warranty
period, the fraction that the manufacturer pays is denoted by 𝑝 so that
1 − 𝑝 is the fraction borne by the customer. When the manufacturer
covers some of the maintenance visits, as in the cases discussed above,
the cost-sharing ratio 𝑝 is restricted to a finite set of values—that is,
𝑝 ∈ {0, 1∕𝑛, 2∕𝑛,… , 1}, where 𝑛 is the total number of PM actions
in the warranty period. However, to facilitate analysis, we consider 𝑝
to be a real number between zero and one, inclusive. In this setting,
the customer partially pays for each of the maintenance visits. The
objective of the manufacturer’s scheduling problem is to balance PM
and repair costs by performing PM in the warranty period as cost-
effectively as possible. The determination of an optimal cost-sharing
ratio is deferred to Section 5. Table 1 summarizes the notation used in
this paper.

3.1. Assumptions

Suppose that the rate at which product usage accumulates is a
constant, denoted by 𝑟, and is known to the manufacturer. This con-
stant usage rate assumption is reasonable for automobiles and many
other products. We model product failures using a one-dimensional
approach (see, e.g., Murthy et al., 1995; Wang and Xie, 2018). In this
approach, the time required for a repair is assumed to be negligible
relative to the mean time between failures. Therefore, under usage rate
𝑟, we can express the cumulative amount of usage at time 𝑡 as 𝑟𝑡. When
a product is repairable, time refers to its age. We assume that product
failures occur according to a nonhomogeneous Poisson process (NHPP)
with intensity function 𝜆(𝑡), which is increasing in age and usage. In
the absence of PM, the failure intensity at time 𝑡 is given by

𝜆(𝑡) = 𝜃0 + 𝜃1𝑟 + 𝜃2𝑡 + 𝜃3𝑟𝑡,

where 𝜃𝑖’s are nonnegative constant coefficients. This additive intensity
function is widely adopted in the 2-D warranty literature (see, e.g.,
Iskandar and Murthy, 2003; Su and Wang, 2016; Huang et al., 2017)
and can be viewed as an additive hazards model (Eliashberg et al.,
1997; Singpurwalla and Wilson, 1998). The first three terms represent a
baseline failure intensity. Were a product to undergo no use, it would
fail at a time characterized by this failure intensity. Specifically, the
first term is an intrinsic intensity level that is independent of age
and usage. The second term captures the heterogeneity in the baseline
failure intensity. The higher the usage rate, the harsher the operating
condition becomes. The third term corresponds to the effect of age.
The last term implies that each unit of cumulative usage increases the
failure intensity by the same amount. It is worth mentioning that the
effect of usage on time to failure can also be described by an accelerated
failure time model (see, e.g., Shahanaghi et al., 2013; Li et al., 2019;
Wang et al., 2020, 2021).

We denote 𝜏𝑖 as the instant at which the 𝑖th PM action is performed
and 𝛿𝑖 as the interval between the (𝑖−1)th and 𝑖th actions for 𝑖 = 1,… , 𝑛.
When maintenance duration is negligible, we have 𝛿𝑖 = 𝜏𝑖 − 𝜏𝑖−1, where
𝜏0 = 0. The efficiency of the 𝑖th PM action is described by the amount of
failure intensity reduction 𝑥𝑖. We assume that the failure intensity can

be restored to its lowest attainable level 𝜆(0) = 𝜃0 + 𝜃1𝑟 every time PM
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Table 1
Model notation.

Symbol Definition

Parameters:
𝑟 Product usage rate
𝜆(𝑡) Product failure intensity at time 𝑡
𝜃0, 𝜃1, 𝜃2, 𝜃3 Coefficients in the failure intensity function
𝑘 Setup cost of PM
𝑏 Variable cost of PM
𝑐 Cost per repair
𝛼 One plus the markup over the repair cost
𝛽 One plus the markup over the PM cost
𝑊 , 𝑈 Age and usage limits of the 2-D warranty, respectively
𝑇 , 𝐿 Age and usage limits of the product’s useful life, respectively
𝑛∗, 𝑚̃∗ Solutions of the continuous relaxations
𝑚 Optimal number of PM actions by the customer when

𝜆(𝑊 ) = 𝜃0 + 𝜃1𝑟
𝜆∗ Failure intensity at the end of the 2-D warranty under the

optimal PM schedule
𝜆 𝜆∗ without cost sharing
Decision variables:
𝑝 Cost-sharing ratio of the manufacturer
𝑛, 𝑚 Number of PM actions performed by the manufacturer and the

customer, respectively
𝜏𝑖, 𝜏 𝑖 Time of the 𝑖th PM action
𝛿𝑖, 𝜉𝑖 Time interval between the (𝑖 − 1)th and 𝑖th PM actions
𝑥𝑖, 𝑦𝑖 Reduction in failure intensity as a result of the 𝑖th PM action
Cost functions:
𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝) Manufacturer’s cost function
𝐻(𝑚, 𝝃, 𝒚; 𝜆(𝑊 )) Customer’s cost function
is performed. For any 𝜏𝑖−1 ≤ 𝑡 < 𝜏𝑖, the failure intensity in the presence
f PM becomes

(𝑡) = 𝜃0 + 𝜃1𝑟 + 𝜃2𝑡 + 𝜃3𝑟𝑡 −
𝑖−1
∑

𝑗=1
𝑥𝑗 .

According to this intensity function, a PM action with efficiency 𝑥𝑖
makes a product 𝑥𝑖∕(𝜃2 + 𝜃3𝑟) units of time younger.

It is assumed that the cost of a PM action is linear in the failure
intensity reduction 𝑥𝑖 and is given by 𝑘 + 𝑏𝑥𝑖, where 𝑘 is the setup
cost and 𝑏 is the variable cost of PM. In addition to PM costs, the
manufacturer bears possible repair costs during the warranty period.
Under NHPP, product failures are rectified by minimal repairs; that is,
the failure intensity stays unchanged after repair. The average cost of
each repair is a constant 𝑐.

3.2. Optimal PM schedule

We represent the 2-D warranty by an age limit 𝑊 and a usage limit
𝑈 . Depending on the value of usage rate 𝑟, we have the following two
cases for warranty expiration: If 𝑟 ≤ 𝑈∕𝑊 , the 2-D warranty will expire
at time 𝑊 ; if 𝑟 > 𝑈∕𝑊 , it will cease at time 𝑈∕𝑟.

We first fix the cost-sharing ratio 𝑝. The manufacturer’s decision
variables are the number of PM actions, the intervals between suc-
cessive PM actions, and the amount of failure intensity reduction at
each PM instant. We denote the manufacturer’s PM schedule by (𝑛, 𝜹,𝒙),
where 𝜹 = (𝛿1, 𝛿2,… , 𝛿𝑛) and 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛). Let 𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝) be the
manufacturer’s expected total cost of honoring the 2-D warranty for a
given usage rate 𝑟 and cost-sharing ratio 𝑝. In the case of 𝑟 ≤ 𝑈∕𝑊 , this
cost function can be written as

𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝) = 𝑐
𝑛
∑

𝑖=1
∫

𝜏𝑖

𝜏𝑖−1
𝜆(𝑡)𝑑𝑡 + 𝑐 ∫

𝑊

𝜏𝑛
𝜆(𝑡)𝑑𝑡 +

𝑛
∑

𝑖=1
𝑝(𝑘 + 𝑏𝑥𝑖).

The first term represents the expected repair cost from time zero to
time 𝜏𝑛, which is calculated by multiplying the average cost per repair
by the expected number of failures. The second term corresponds to
the expected repair cost from time 𝜏𝑛 to time 𝑊 . In this term, 𝜆(𝑡) =
𝜃0 + 𝜃1𝑟 + 𝜃2𝑡 + 𝜃3𝑟𝑡 −

∑𝑛
𝑖=1 𝑥𝑖. The last term is the total PM cost borne
3

by the manufacturer.
Following the optimization steps in Jack and Murthy (2002), we
first determine the optimal amounts of failure intensity reduction for
any 𝑛 ≥ 1 and 𝛿𝑖 ≥ 0 and then find the optimal PM intervals for a given
𝑛 ≥ 1. Finally, we obtain the optimal number of PM actions. In the first
step, we solve the following linear program:

minimize
𝒙

𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝)

subject to 𝑥𝑖 ≤ lim
𝑡→𝜏−𝑖

𝜆(𝑡) − 𝜆(0), 𝑖 = 1,… , 𝑛,

𝑥𝑖 ≥ 0, 𝑖 = 1,… , 𝑛,

where lim𝑡→𝜏−𝑖
𝜆(𝑡) = 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)

∑𝑖
𝑗=1 𝛿𝑗 −

∑𝑖−1
𝑗=1 𝑥𝑗 and 𝜆(0) =

𝜃0 + 𝜃1𝑟. The first constraint ensures that the failure intensity after PM
is no less than its lowest attainable level. This constraint is equivalent
to ∑𝑖

𝑗=1 𝑥𝑗 ≤ (𝜃2 + 𝜃3𝑟)
∑𝑖

𝑗=1 𝛿𝑗 for any 𝑖.

Proposition 1. Given 𝑛 ≥ 1 and 𝛿𝑖 ≥ 0 such that ∑𝑛
𝑖=1 𝛿𝑖 ≤ 𝑊 − 𝑝𝑏∕𝑐,

we have 𝑥∗𝑖 = (𝜃2 + 𝜃3𝑟)𝛿𝑖 for 𝑖 = 1,… , 𝑛.

This result indicates that the manufacturer should bring the failure
intensity down to its lowest attainable level at each PM instant, which
can be achieved through replacement or a major overhaul. This result
is consistent with the findings in Yeh and Lo (2001), Jack and Murthy
(2002), and Peng et al. (2021). If the amount of failure intensity
reduction is required to be no greater than the increment in the failure
intensity since the last PM action, then we can add the constraints 𝑥𝑖 ≤
(𝜃2 + 𝜃3𝑟)𝛿𝑖 for 𝑖 = 1, 2,… , 𝑛. The optimal solution remains unchanged
because it still lies in the new feasible region, which is smaller than the
original one.

The condition under which Proposition 1 holds has an intuitive
interpretation: It specifies an interval that must include the instant
of the last PM action. Otherwise, if this action is performed in (𝑊 −
𝑝𝑏∕𝑐,𝑊 ], that is, if 𝑊 − 𝑝𝑏∕𝑐 <

∑𝑛
𝑖=1 𝛿𝑖 ≤ 𝑊 , then 𝑝(𝑘 + 𝑏𝑥𝑛) >

𝑐(𝑊 −
∑𝑛

𝑖=1 𝛿𝑖)𝑥𝑛 for any 𝑥𝑛 ≥ 0 and 𝑝 > 0, implying that the increase
in the PM cost will be greater than the decrease in the expected repair
cost. Therefore, when deciding on 𝛿𝑖, we restrict our attention to the
region defined by ∑𝑛

𝑖=1 𝛿𝑖 ≤ 𝑊 − 𝑝𝑏∕𝑐 rather than by ∑𝑛
𝑖=1 𝛿𝑖 ≤ 𝑊 . Note

that when 𝑊 < 𝑝𝑏∕𝑐, any PM action is not worthwhile. In this case, the

solution 𝑛 = 0 is optimal.



International Journal of Production Economics 254 (2022) 108580S. Peng et al.

P

T
t
w
e
c
t

⌈

−

t
b
i
𝐶
s

(

r
s
i

I

Substituting 𝑥∗𝑖 into 𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝) yields

𝐶(𝑛, 𝜹,𝒙∗; 𝑟, 𝑝) = 𝑐(𝜃2 + 𝜃3𝑟)

(

∑𝑛
𝑖=1 𝛿

2
𝑖

2
+

(

𝑊 −
∑𝑛

𝑖=1 𝛿𝑖
)2

2
+

𝑝𝑏
∑𝑛

𝑖=1 𝛿𝑖
𝑐

)

+ 𝑛𝑝𝑘 + 𝑐(𝜃0 + 𝜃1𝑟)𝑊 .

Next, we solve the following minimization problem given 𝑛 ≥ 1:

minimize
𝜹

𝐶(𝑛, 𝜹,𝒙∗; 𝑟, 𝑝)

subject to
𝑛
∑

𝑖=1
𝛿𝑖 ≤ 𝑊 −

𝑝𝑏
𝑐
,

𝛿𝑖 ≥ 0, 𝑖 = 1,… , 𝑛.

roposition 2. If 𝑊 ≥ 𝑝𝑏∕𝑐, then we have 𝛿∗1 = 𝛿∗2 = ⋯ = 𝛿∗𝑛 =
𝑊

(𝑛+1) −
𝑝𝑏

(𝑛+1)𝑐 for any given integer 𝑛 ≥ 1.

This result shows that the optimal PM policy exhibits periodicity.
he optimal PM interval 𝛿∗𝑖 is independent of setup cost 𝑘 and is less
han 𝑊 ∕(𝑛+1). Hence, our policy differs from the one that divides the
arranty period into 𝑛+1 equal intervals, as in Dai et al. (2021), Hamidi
t al. (2016), Iskandar and Husniah (2017), and Wang et al. (2020). The
onstraint ∑𝑛

𝑖=1 𝛿𝑖 ≤ 𝑊 − 𝑝𝑏∕𝑐 is not binding at the optimum, and thus
here is a no-maintenance interval of length 𝑊

𝑛+1 + 𝑛𝑝𝑏
(𝑛+1)𝑐 at the end of

the 2-D warranty, where only minimal repairs are carried out.
Further substituting 𝛿∗𝑖 into 𝐶(𝑛, 𝜹,𝒙∗; 𝑟, 𝑝) gives

𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) = 𝑝𝑘𝑛 +
𝑐(𝜃2 + 𝜃3𝑟)(𝑊 − 𝑝𝑏∕𝑐)2

2(𝑛 + 1)
+ 𝑐(𝜃0 + 𝜃1𝑟)𝑊

+ (𝜃2 + 𝜃3𝑟)𝑝𝑏𝑊 −
(𝜃2 + 𝜃3𝑟)𝑝2𝑏2

2𝑐
.

Note that 𝐶(0, 𝜹∗,𝒙∗; 𝑟, 𝑝) = 1
2 𝑐(𝜃2 + 𝜃3𝑟)𝑊 2 + 𝑐(𝜃0 + 𝜃1𝑟)𝑊 . This is

precisely the expected total cost for the policy of no PM actions.
Although 𝜹 and 𝒙 are undefined when 𝑊 ≥ 𝑝𝑏∕𝑐 and 𝑛 = 0, we have
included this case in the optimization model.

Proposition 3. Let

𝑛∗ =
(

𝑊 −
𝑝𝑏
𝑐

)

√

𝑐(𝜃2 + 𝜃3𝑟)
2𝑝𝑘

− 1.

When 𝑛∗ > 0, the optimal number of PM actions 𝑛∗ is determined by ⌊𝑛∗⌋ or
𝑛∗⌉, where ⌊ ⋅ ⌋ is the floor function and ⌈ ⋅ ⌉ is the ceiling function. When
1 ≤ 𝑛∗ ≤ 0, that is, when 𝑝𝑏∕𝑐 ≤ 𝑊 ≤ 𝑝𝑏∕𝑐+

√

2𝑝𝑘
𝑐(𝜃2+𝜃3𝑟)

, we have 𝑛∗ = 0.

Since 𝑛 is a discrete variable, its optimal value corresponds to the
integer below or above 𝑛∗, the optimal solution of the continuous re-
laxation. The rounding depends on the values of the objective function
evaluated at these two integers. Another way to obtain 𝑛∗ is to take
he first difference 𝐶(𝑛 + 1, 𝜹∗,𝒙∗; 𝑟, 𝑝) − 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝), which is the
enefit of having one more PM action. The condition for optimality
s that 𝑛 be the smallest nonnegative integer such that the difference
(𝑛+1, 𝜹∗,𝒙∗; 𝑟, 𝑝)−𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) ≥ 0. This corresponds to finding the

mallest 𝑛 for which

𝑛 + 1)(𝑛 + 2) ≥
𝑐(𝜃2 + 𝜃3𝑟)(𝑊 − 𝑝𝑏∕𝑐)2

2𝑝𝑘
. (1)

For the case of 𝑟 > 𝑈∕𝑊 , we substitute 𝑈∕𝑟 for 𝑊 and simply
epeat the above optimization steps. Under the optimal policy, PM is
cheduled to be performed every 𝑈

(𝑛+1)𝑟−
𝑝𝑏

(𝑛+1)𝑐 units of time, and at each
nstant of PM, the failure intensity is reduced by (𝜃2+𝜃3𝑟)(

𝑈
(𝑛+1)𝑟−

𝑝𝑏
(𝑛+1)𝑐 ).

The objective function in the last step is given as follows:

𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) = 𝑝𝑘𝑛 +
𝑐(𝜃2 + 𝜃3𝑟)(𝑈∕𝑟 − 𝑝𝑏∕𝑐)2

2(𝑛 + 1)
+

𝑐(𝜃0 + 𝜃1𝑟)𝑈
𝑟

+
(𝜃2 + 𝜃3𝑟)𝑝𝑏𝑈 −

(𝜃2 + 𝜃3𝑟)𝑝2𝑏2 .
4

𝑟 2𝑐
Table 2
Expiry and end times for different usage rates.

Case Expiry time of
the warranty

End time of
the useful life

𝑟 < 𝑈∕𝑊 ≤ 𝐿∕𝑇 𝑊 𝑇
𝑈∕𝑊 ≤ 𝑟 ≤ 𝐿∕𝑇 𝑈∕𝑟 𝑇
𝑈∕𝑊 ≤ 𝐿∕𝑇 < 𝑟 𝑈∕𝑟 𝐿∕𝑟
𝑟 < 𝐿∕𝑇 < 𝑈∕𝑊 𝑊 𝑇
𝐿∕𝑇 ≤ 𝑟 < 𝑈∕𝑊 𝑊 𝐿∕𝑟
𝐿∕𝑇 < 𝑈∕𝑊 ≤ 𝑟 𝑈∕𝑟 𝐿∕𝑟

To determine 𝑛∗, we need to find the smallest 𝑛 for which

(𝑛 + 1)(𝑛 + 2) ≥
𝑐(𝜃2 + 𝜃3𝑟)(𝑈∕𝑟 − 𝑝𝑏∕𝑐)2

2𝑝𝑘
.

t is worth noting that the condition 𝑈∕𝑟 ≥ 𝑝𝑏∕𝑐 is less likely to hold
for higher values of 𝑟.

With 𝑝 held fixed, we next perform comparative statics of the
optimal PM schedule in the warranty period with respect to 𝑟.

Proposition 4. If 𝑟 ≤ 𝑈∕𝑊 , then 𝑛∗ is increasing and 𝛿∗𝑖 is decreasing in
𝑟; if 𝑟 > 𝑈∕𝑊 , then 𝑛∗ is decreasing in 𝑟.

Despite the discrete nature of our problem, we can still use differen-
tial techniques to examine the properties of the optimal PM policy. The
key to our analysis is the interaction between 𝑛 and 𝑟 in 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝).
Depending on the sign of the cross-partial derivative, the marginal cost
of increasing the number of PM actions either increases or decreases in
usage rate, meaning that the desirability of more PM actions is either
decreasing or increasing in usage rate. The first part of this result can
also be obtained from Inequality (1) by noting that the left-hand side
of this inequality is increasing in 𝑛 and the right-hand side is increasing
in 𝑟. The second part follows similarly.

When 𝑟 ≤ 𝑈∕𝑊 , the higher the usage rate, the higher the failure
intensity, and thus the higher the number of PM actions. However,
when 𝑟 > 𝑈∕𝑊 , the higher the usage rate, the lower the number
of PM actions because the 2-D warranty ceases sooner. Although a
comparative statics result does not hold for 𝛿∗𝑖 when 𝑟 > 𝑈∕𝑊 and for
𝑥∗𝑖 in both cases, we can show that for any given 𝑛, 𝛿∗𝑖 is constant and
𝑥∗𝑖 is increasing in 𝑟 if 𝑟 ≤ 𝑈∕𝑊 ; otherwise, 𝛿∗𝑖 and 𝑥∗𝑖 are decreasing
in 𝑟. We can also show monotonic properties with respect to 𝑟 for some
other quantities, such as the instant of the last PM action 𝑛∗𝛿∗𝑖 and the
total amount of failure intensity reduction 𝑛∗𝑥∗𝑖 .

4. The customer’s scheduling problem

In this section, we specify the customer’s optimal PM schedule in
the post-warranty period to determine an optimal cost-sharing ratio.
We assume that the product has a useful life of 𝑇 units of time or 𝐿
units of cumulative usage, whichever comes first. The customer will
keep this product until the end of its life. The end time depends on the
usage rate 𝑟 and is listed in Table 2 for different values of 𝑟, along with
the expiry time of the 2-D warranty. The analysis is quite similar for
each case, and thus we only focus on the first case for illustration.

During the post-warranty period, the customer will carry out PM so
as to reduce future repair costs (Wu et al., 2011). We denote 𝑚 as the
number of PM actions by the customer, 𝜉𝑖 as the interval between the
(𝑖−1)th and 𝑖th actions, and 𝑦𝑖 as the reduction in failure intensity due to
the 𝑖th action for 𝑖 = 1,… , 𝑚. Then, the customer’s PM schedule can be
represented as (𝑚, 𝝃, 𝒚), where 𝝃 = (𝜉1, 𝜉2,… , 𝜉𝑚) and 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝑚).
The schedule is directly influenced by the failure intensity at the end of
the 2-D warranty (i.e., 𝜆(𝑊 )), which is also the initial failure intensity
in the post-warranty period. We use 𝜏 𝑖 to represent the instant of the
𝑖th PM action during the post-warranty period, with 𝜏 = 𝑊 . It is easy
0
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to see that 𝜏 𝑖 = 𝑊 +
∑𝑖

𝑗=1 𝜉𝑗 . For any 𝜏𝑖−1 ≤ 𝑡 < 𝜏𝑖, the failure intensity
t time 𝑡 is

(𝑡) = 𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)(𝑡 −𝑊 ) −
𝑖−1
∑

𝑗=1
𝑦𝑗 ,

here 𝜆(𝑊 ) = 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝑊 −
∑𝑛∗

𝑖=1 𝑥
∗
𝑖 .

The customer’s scheduling problem is to find an optimal PM plan
hat minimizes the expected total cost in the post-warranty period,
hich is given by

(𝑚, 𝝃, 𝒚; 𝜆(𝑊 )) = 𝛼𝑐
𝑚
∑

𝑖=1
∫

𝜏𝑖

𝜏𝑖−1
𝜆(𝑡)𝑑𝑡 + 𝛼𝑐 ∫

𝑇

𝜏𝑛
𝜆(𝑡)𝑑𝑡 +

𝑚
∑

𝑖=1
𝛽(𝑘 + 𝑏𝑦𝑖), (2)

where 𝛼 ≥ 1 is one plus the markup over the manufacturer’s repair cost
and 𝛽 ≥ 1 is one plus the markup over the PM cost. In the second term,
𝜆(𝑡) = 𝜆(𝑊 )+(𝜃2+𝜃3𝑟)(𝑡−𝑊 )−

∑𝑛
𝑖=1 𝑦𝑖. We can see from Eq. (2) that the

customer has the same cost structure as the manufacturer but performs
PM over a different time horizon and faces a different initial failure
intensity.

As in the manufacturer’s problem, the optimal schedule can be
obtained by first optimizing the amount of failure intensity reduction
at each PM instant, then the intervals between successive PM actions,
and finally the number of PM actions. In the first step, the customer’s
problem can be written as:

minimize
𝒚

𝐻(𝑚, 𝝃, 𝒚; 𝜆(𝑊 ))

subject to 𝑦𝑖 ≤ lim
𝑡→𝜏−𝑖

𝜆(𝑡) − 𝜆(0), 𝑖 = 1,… , 𝑚,

𝑦𝑖 ≥ 0, 𝑖 = 1,… , 𝑚,

where lim𝑡→𝜏−𝑖
𝜆(𝑡) = 𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)

∑𝑖
𝑗=1 𝜉𝑗 −

∑𝑖−1
𝑗=1 𝑦𝑗 . The first

constraint implies that the customer can reduce the failure intensity by
an additional amount 𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟 compared to the manufacturer,
which is the increment in the failure intensity from time 𝜏𝑛 to time 𝑊 .

Proposition 5. For any 𝑚 ≥ 1 and 𝜉𝑖 ≥ 0 such that∑𝑚
𝑖=1 𝜉𝑖 ≤ 𝑇 −𝑊 − 𝛽𝑏

𝛼𝑐 ,
we have

𝑦∗𝑖 =

{

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝜉𝑖, 𝑖 = 1,
(𝜃2 + 𝜃3𝑟)𝜉𝑖, 𝑖 = 2,… , 𝑚.

A common feature of the optimal policies adopted by the customer
and the manufacturer is that the failure intensity should be reduced
to its lowest attainable level each time PM is performed. Therefore,
in terms of PM efficiency, the failure intensity at the end of the 2-
D warranty only affects the customer’s first PM action. Because it is
not worthwhile for the customer to take PM actions in the interval
(𝑇 − 𝛽𝑏

𝛼𝑐 , 𝑇 ], we impose the constraint ∑𝑚
𝑖=1 𝜉𝑖 ≤ 𝑇 −𝑊 − 𝛽𝑏

𝛼𝑐 on 𝜉𝑖 instead
f the constraint ∑𝑚

𝑖=1 𝜉𝑖 ≤ 𝑇 − 𝑊 . Note that when 𝑇 − 𝑊 < 𝛽𝑏
𝛼𝑐 , the

solution 𝑚 = 0 is optimal.
Substituting 𝑦∗𝑖 into 𝐻(𝑚, 𝝃, 𝒚; 𝜆(𝑊 )) yields

𝐻(𝑚, 𝝃, 𝒚∗; 𝜆(𝑊 ))

= 𝛼𝑐(𝜃2 + 𝜃3𝑟)

(

∑𝑚
𝑖=1 𝜉

2
𝑖

2
+

(

𝑇 −𝑊 −
∑𝑚

𝑖=1 𝜉𝑖
)2

2
+

𝛽𝑏
∑𝑚

𝑖=1 𝜉𝑖
𝛼𝑐

)

+ 𝛼𝑐
(

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟
)

𝜉1 + 𝑚𝛽𝑘 + 𝛼𝑐(𝜃0 + 𝜃1𝑟)(𝑇 −𝑊 )

+ 𝛽𝑏
(

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟
)

.

We next solve the following minimization problem given 𝑚 ≥ 1:

minimize
𝝃

𝐻(𝑚, 𝝃, 𝒚∗; 𝜆(𝑊 ))

subject to
𝑚
∑

𝑖=1
𝜉 ≤ 𝑇 −𝑊 −

𝛽𝑏
𝛼𝑐

,

𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑚.

roposition 6. Suppose that 𝑇 −𝑊 ≥ 𝛽𝑏
𝛼𝑐 . The following statements are

rue for any integer 𝑚 ≥ 1:
5

(a) If 𝜆(𝑊 ) ≤ 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

, then

𝜉∗𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑇−𝑊
𝑚+1 − 𝛽𝑏

(𝑚+1)𝛼𝑐 − 𝑚(𝜆(𝑊 )−𝜃0−𝜃1𝑟)
(𝑚+1)(𝜃2+𝜃3𝑟)

, 𝑖 = 1,

𝑇−𝑊
𝑚+1 − 𝛽𝑏

(𝑚+1)𝛼𝑐 + 𝜆(𝑊 )−𝜃0−𝜃1𝑟
(𝑚+1)(𝜃2+𝜃3𝑟)

, 𝑖 = 2,… , 𝑚.

(b) If 𝜆(𝑊 ) > 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

, then

𝜉∗𝑖 =

{

0, 𝑖 = 1,
𝑇−𝑊
𝑚 − 𝛽𝑏

𝑚𝛼𝑐 , 𝑖 = 2,… , 𝑚.

The failure intensity at the end of the 2-D warranty affects not only
the efficiency of the first PM action, but also the optimal PM intervals in
the post-warranty period. The first case of this proposition is illustrated
in Fig. 1. Since in this case 𝜉∗𝑖 = 𝜉∗1 + 𝜆(𝑊 )−𝜃0−𝜃1𝑟

𝜃2+𝜃3𝑟
for 𝑖 = 2,… , 𝑚, we

can treat time 𝑊 − 𝜆(𝑊 )−𝜃0−𝜃1𝑟
𝜃2+𝜃3𝑟

as the starting point of the customer’s
planning horizon. When 𝜆(𝑊 ) = 𝜃0+𝜃1𝑟, the optimal schedule requires
equal maintenance intervals. As 𝜆(𝑊 ) increases from 𝜃0+𝜃1𝑟 to 𝜃0+𝜃1𝑟+
𝜃2+𝜃3𝑟

𝑚 (𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ), it becomes nonperiodic: The first PM interval gets

smaller while the others get larger. At the end of the product’s useful
life, a no-maintenance interval of length 𝑇−𝑊

𝑚+1 + 𝑚𝛽𝑏
(𝑚+1)𝛼𝑐 + 𝜆(𝑊 )−𝜃0−𝜃1𝑟

(𝑚+1)(𝜃2+𝜃3𝑟)
is also larger. In the second case, the length of the first PM interval
shrinks to zero, and it is no longer profitable for the customer to defer
PM. The first PM action is thus similar to an upgrade implemented at
the beginning of the post-warranty period. The remaining PM actions
are performed at regular intervals. The no-maintenance interval is of
length 𝑇−𝑊

𝑚 + (𝑚−1)𝛽𝑏
𝑚𝛼𝑐 .

When 𝜆(𝑊 ) ≤ 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚 (𝑇 − 𝑊 − 𝛽𝑏
𝛼𝑐 ), that is, when 𝑚 ≤

𝜃2+𝜃3𝑟
𝜆(𝑊 )−𝜃0−𝜃1𝑟

(𝑇 − 𝑊 − 𝛽𝑏
𝛼𝑐 ), substituting 𝜉∗𝑖 into 𝐻(𝑚, 𝝃, 𝒚∗; 𝜆(𝑊 )) and

rearranging terms gives

𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 ))

= 𝛽𝑘𝑚 +
𝛼𝑐(𝜃2 + 𝜃3𝑟)
2(𝑚 + 1)

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

+
𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟

𝜃2 + 𝜃3𝑟

)2

+ 𝛽𝑏(𝜃2 + 𝜃3𝑟)(𝑇 −𝑊 ) −
𝛼𝑐(𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟)2

2(𝜃2 + 𝜃3𝑟)
−

𝛽2𝑏2(𝜃2 + 𝜃3𝑟)
2𝛼𝑐

+ 𝛼𝑐(𝜃0 + 𝜃1𝑟)(𝑇 −𝑊 ) + 𝛽𝑏
(

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟
)

.

(3)

From this expression, we see that 𝐻(0, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) = 𝛼𝑐(𝑇 −𝑊 )𝜆(𝑊 )+
1
2𝛼𝑐(𝜃2+𝜃3𝑟)(𝑇 −𝑊 )2 corresponds to the expected total cost for the case
f 𝑚 = 0, which we did not include in the above analysis.

When 𝜆(𝑊 ) > 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚 (𝑇 − 𝑊 − 𝛽𝑏
𝛼𝑐 ), that is, when 𝑚 >

𝜃2+𝜃3𝑟
𝜆(𝑊 )−𝜃0−𝜃1𝑟

(𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ), the cost function 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) becomes

(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) = 𝛽𝑘𝑚 +
𝛼𝑐(𝜃2 + 𝜃3𝑟)

2𝑚

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

)2

+ 𝛽𝑏(𝜃2 + 𝜃3𝑟)(𝑇 −𝑊 ) −
𝛽2𝑏2(𝜃2 + 𝜃3𝑟)

2𝛼𝑐
+ 𝛼𝑐(𝜃0 + 𝜃1𝑟)(𝑇 −𝑊 ) + 𝛽𝑏

(

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟
)

.

(4)

When 𝑚 is regarded as a continuous variable, we can show that
(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) is convex in each of the two intervals. It is also

ontinuous and differentiable at 𝑚 = 𝜃2+𝜃3𝑟
𝜆(𝑊 )−𝜃0−𝜃1𝑟

(𝑇 − 𝑊 − 𝛽𝑏
𝛼𝑐 ). The

erivative at this point is 𝛽𝑘 − 𝛼𝑐(𝜆(𝑊 )−𝜃0−𝜃1𝑟)2

2(𝜃2+𝜃3𝑟)
. The following propo-

sition characterizes the optimal 𝑚 that minimizes the cost function
𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )).

Proposition 7. Suppose that 𝑇 − 𝑊 > 𝛽𝑏
𝛼𝑐 and let 𝑚 be the optimal

number of PM actions when 𝜆(𝑊 ) = 𝜃0 + 𝜃1𝑟. Then, as 𝜆(𝑊 ) increases
from 𝜃0 + 𝜃1𝑟 to 𝜃0 + 𝜃1𝑟 +

𝜃2+𝜃3𝑟
𝑚 (𝑇 − 𝑊 − 𝛽𝑏

𝛼𝑐 ), 𝑚
∗ increases from 𝑚 to

𝑚 + 1. When 𝜆(𝑊 ) > 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚 (𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ), we have 𝑚

∗ = 𝑚 + 1.
When 𝑇 −𝑊 = 𝛽𝑏

𝛼𝑐 , we have 𝑚
∗ = 0.

As 𝜆(𝑊 ) increases, 𝑚∗ increases by at most one, indicating a limited

effect of 𝜆(𝑊 ) on the customer’s optimal PM schedule. The reason is
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Fig. 1. Optimal PM intervals for small 𝜆(𝑊 ).
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that the failure process will start anew once a PM action is performed
at the beginning of the post-warranty period. Thus, in this case, the
optimal number of PM actions is one plus 𝑚, where 𝑚 is the smallest
nonnegative integer such that

(𝑚 + 1)(𝑚 + 2) ≥
𝛼𝑐(𝜃2 + 𝜃3𝑟)

(

𝑇 −𝑊 − 𝛽𝑏∕(𝛼𝑐)
)2

2𝛽𝑘
.

f 𝜃0+𝜃1𝑟+
𝜃2+𝜃3𝑟
𝑚+1 (𝑇 −𝑊 − 𝛽𝑏

𝛼𝑐 ) < 𝜆(𝑊 ) ≤ 𝜃0+𝜃1𝑟+
𝜃2+𝜃3𝑟

𝑚 (𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ), the

unctional form of 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) we use to derive 𝑚∗ is different for
= 𝑚 and 𝑚 = 𝑚+1. The point at which the jump in 𝑚∗ occurs can lie

n either side of 𝜃0 + 𝜃1𝑟+
𝜃2+𝜃3𝑟
𝑚+1 (𝑇 −𝑊 − 𝛽𝑏

𝛼𝑐 ). By Propositions 5 and 6,
we can show that 𝑦∗1 is increasing and 𝜉∗1 is decreasing in 𝜆(𝑊 ).

5. Optimal cost-sharing ratio

In the automobile industry, although lack of maintenance usually
leads to coverage denials, the balance of power can still shift from the
manufacturer to the customer. When auto sales decline, the industry
becomes a buyer’s market, which means that the manufacturer is more
willing to negotiate and needs better sales and service approaches for
winning customers. Therefore, we can view the customer as having
more bargaining power than the manufacturer.

We formulate the problem of designing a cost-sharing PM program
as a sequential game. The customer moves first and chooses 𝑝 at time
ero to maximize his or her surplus. The manufacturer responds by
eciding whether to accept this ratio. If yes, then the manufacturer
pecifies a PM schedule in the warranty period, and the customer
ays all uncovered PM costs; otherwise, the product is subject to the
ptimal schedule without cost-sharing. In the post-warranty period, the
ustomer makes the PM decision upon observing the failure intensity at
he end of the 2-D warranty. To obtain the optimal cost-sharing ratio,
e next investigate how the manufacturer and the customer benefit

rom sharing PM costs.

roposition 8. The following results hold:

(a) 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 𝑝) is increasing in 𝑝.
(b) 𝑛∗ is decreasing in 𝑝 and goes to infinity as 𝑝 → 0+.
(c) Let 𝜆∗ = 𝜃0+𝜃1𝑟+(𝜃2+𝜃3𝑟)𝑊 −

∑𝑛∗
𝑖=1 𝑥

∗
𝑖 denote the failure intensity

at the end of the 2-D warranty under the optimal PM schedule. Then,
𝜆∗ is increasing in 𝑝 and approaches to 𝜃0 + 𝜃1𝑟 as 𝑝 → 0+.

(d) 𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) is increasing in 𝜆(𝑊 ).

Part (a) shows that cost sharing reduces the manufacturer’s expected
otal cost over the warranty period. Consequently, the manufacturer
ill accept any cost-sharing ratio from the customer. In part (b), as
ould be expected, the greater the proportion paid by the manufac-

urer, the smaller the number of PM actions performed. By parts (c)
nd (d), the optimal PM schedule without cost-sharing results in the
6

t

ighest failure intensity at the end of the 2-D warranty, which in turn
eads to the highest expected total cost in the post-warranty period.
herefore, the customer may be willing to incur some costs to reduce
his failure intensity.

We define customer surplus as the difference between the reduction
n the post-warranty cost and the shared PM cost. Customers will be
etter off if they are left with positive surplus, and the customer surplus
aximization problem can be described as follows:

aximize
𝑝

𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆) −𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆∗) − (1 − 𝑝)
𝑛∗
∑

𝑖=1
(𝑘 + 𝑏𝑥∗𝑖 )

subject to 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 𝑝) ≤ 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 1),
0 ≤ 𝑝 ≤ 1,

where 𝜆 is the failure intensity at the end of the 2-D warranty under
the optimal PM schedule without cost sharing. The first constraint
is the participation constraint of the manufacturer. This constraint
always holds by part (a) of Proposition 8. Note that maximizing the
customer surplus is equivalent to minimizing the expected total cost
𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆∗)+(1−𝑝)

∑𝑛∗
𝑖=1(𝑘+𝑏𝑥

∗
𝑖 ). We find the optimal solution using

a grid search algorithm (see Appendix B for details). When 𝑛∗ = 0, the
aximizing value of 𝑝 is not unique. In this case, we take 𝑝∗ = 1. For

he other cases in Table 2, we simply replace 𝑊 by the corresponding
xpiry time of the 2-D warranty and 𝑇 by the corresponding end time
f the useful life.

. Numerical study

In this section, we show how to find the optimal cost-sharing ratio
nd demonstrate the benefits of cost-sharing PM. We consider a product
overed by a 2-D warranty with 𝑊 = 3 years and 𝑈 = 6 × 104 miles.
he product can be used for 𝑇 = 6 years or 𝐿 = 15 × 104 miles,
hichever comes first. As 𝑈∕𝑊 ≤ 𝐿∕𝑇 , the results of this numerical

tudy correspond to the first three cases in Table 2. The coefficients in
he failure intensity function are set to 𝜃0 = 0.1, 𝜃1 = 0.2, 𝜃2 = 0.7,
nd 𝜃3 = 0.7. The product, upon failure, is minimally repaired at cost
= 300. The setup cost for each PM action is 80 and the variable

ost is 300. The markups over PM and repair costs are both 0.5; thus,
= 𝛽 = 1.5.

Table 3 reports the optimal PM schedules in the warranty and post-
arranty periods for various values of 𝑟 and 𝑝. One can see that the
ptimal number of PM actions 𝑛∗ is decreasing in 𝑝, while its post-
arranty counterpart 𝑚∗ is increasing in 𝑝 because the failure intensity
t the end of the 2-D warranty is increasing in 𝑝. However, 𝑚∗ increases
y at most one (see Proposition 7). One can also observe that 𝜉∗1 is
ecreasing and 𝑦∗1 is increasing in 𝑝. The customer postpones the first
M action when 𝑝 is fairly small because of a low failure intensity at

∗ ∗ ∗
he end of the 2-D warranty. As long as 𝜉1 = 0, 𝜉𝑖 and 𝑦𝑖 do not change
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Table 3
Optimal PM schedules for different usage rates and cost-sharing ratios.
𝑟 𝑝 𝑛∗ 𝛿∗𝑖 𝑥∗𝑖 𝐶(𝑛∗ , 𝜹∗ ,𝒙∗; 𝑟, 𝑝) 𝑚∗ 𝜉∗1 𝜉∗𝑖 𝑦∗1 𝑦∗𝑖 𝐻(𝑚∗ , 𝝃∗ , 𝒚∗; 𝜆(𝑊 ))

1 0.1 14 0.19 0.27 623.64 3 0.28 0.57 0.80 0.80 2911.87
0.3 7 0.34 0.47 988.46 3 0.02 0.66 0.92 0.92 3161.42
0.5 5 0.42 0.58 1266.25 3 0.00 0.67 1.28 0.93 3337.50
0.7 3 0.57 0.80 1494.82 3 0.00 0.67 1.78 0.93 3563.25
0.9 3 0.52 0.73 1681.42 3 0.00 0.67 2.00 0.93 3657.75

2 0.1 17 0.16 0.34 919.02 4 0.19 0.45 0.95 0.95 4215.18
0.3 9 0.27 0.57 1434.28 4 0.00 0.50 1.20 1.05 4528.65
0.5 6 0.36 0.75 1837.50 4 0.00 0.50 1.80 1.05 4800.00
0.7 4 0.46 0.97 2175.92 4 0.00 0.50 2.44 1.05 5086.20
0.9 3 0.52 1.10 2459.14 4 0.00 0.50 2.99 1.05 5336.62

3 0.1 13 0.14 0.38 796.10 4 0.21 0.45 1.25 1.25 5466.80
0.3 6 0.24 0.68 1203.60 5 0.00 0.40 1.52 1.12 5883.00
0.5 4 0.30 0.84 1504.00 5 0.00 0.40 2.24 1.12 6207.00
0.7 3 0.32 0.91 1735.65 5 0.00 0.40 2.87 1.12 6490.50
0.9 2 0.37 1.03 1905.20 5 0.00 0.40 3.55 1.12 6795.00

Notes. The subscript 𝑖 for 𝜉∗𝑖 and 𝑦∗𝑖 is greater than one.
Fig. 2. Identification of the optimal cost-sharing ratio 𝑝∗ when 𝑟 = 3.
with 𝑝. It is therefore the efficiency of the first PM action that drives
the increase in the post-warranty cost.

Although 𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) increases with 𝑝 in Table 3, the cus-
tomer would not like 𝑝 to be as small as possible. The choice of 𝑝
depends on the reduction in the post-warranty cost and the shared PM
cost, both of which are plotted as functions of the cost-sharing ratio 𝑝
in Fig. 2(a). As can be seen, they are decreasing in 𝑝 and become zero
at 𝑝 = 1. Due to the discrete nature of our problem, the discontinuities
occur when 𝑛∗ changes. As 𝑝 approaches zero, the shared PM cost goes
to infinity because 𝑛∗ goes to infinity (see Proposition 8). The failure
intensity during the warranty period will eventually be maintained at
𝜃0 + 𝜃1𝑟 so that the cost reduction will converge to a finite limit. To
illustrate how to find 𝑝∗ for a given 𝑟, Fig. 2(b) plots the difference
between the two quantities. One can observe a nonnegative difference
for any 𝑝 in [0.289, 1], which indicates that the customer is better
off. Since 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 𝑝) increases with 𝑝 in Table 3, providing cost-
sharing PM is a win–win strategy. From the customer’s perspective,
we choose 𝑝∗ = 0.718, corresponding to the point at which the largest
difference occurs.

Fig. 3(a) shows the optimal number of PM actions, 𝑛∗, for a range
of values of 𝑟. One can see that 𝑛∗ is increasing in 𝑟 when 𝑟 ≤ 𝑈∕𝑊 and
decreasing otherwise. The curve of the optimal cost-sharing ratio 𝑝∗ in
Fig. 3(b) is discontinuous because 𝑛 is restricted to be an integer. When
𝑛∗ changes, 𝑝∗ will move in the opposite direction. With 𝑛∗ held fixed,
𝑝∗ increases with 𝑟 when 𝑟 ≤ 𝑈∕𝑊 and decreases otherwise. This can
be attributed to the impact of usage rate on the manufacturer’s total
PM cost. Note that no cost sharing is sometimes optimal. Figs. 3(c) and
7

3(d) further show the cost benefits of cost sharing over no cost sharing
for the manufacturer and the customer, respectively. Both parties are
more likely to experience a greater percentage cost reduction for large
𝑟. Moreover, the manufacturer usually benefits more than the customer.
This result is intuitive because the former enjoys cost advantages
(specifically, 𝛼, 𝛽 ≥ 1).

In Fig. 3, we also conduct sensitivity analysis with respect to 𝛽. As 𝛽
increases, the benefit of reducing the failure intensity at the end of the
2-D warranty increases. Consequently, the customer will share more
of the PM cost for a larger reduction in this failure intensity, which
increases 𝑛∗ and the percentage reduction in the manufacturer’s cost.
The customer’s percentage cost reduction is also larger, leading to an
increase in customer surplus. Fig. 4 plots 𝑝∗ against 𝑟 for different values
of 𝑐 and 𝑏. The analysis is performed by keeping 𝑛∗ fixed. An increase in
𝑐 has a positive impact on 𝑝∗ due to an increase in the manufacturer’s
total PM cost. However, there is an opposite effect of increasing the
variable cost 𝑏 because the customer has more incentive to share the
cost of PM. Fig. 5 shows the customer’s expected total cost for three
values of 𝑘. Increasing the setup cost 𝑘 leads to an increase in the
customer’s expected total cost. Note that all the curves reach a peak
at 𝑟 = 𝐿∕𝑇 .

The experimental results yield the following managerial insights for
manufacturers. First, offering cost-sharing PM programs is a win–win
strategy, although in some cases customers are not willing to share.
A uniform cost-sharing PM program may prevent manufacturers from
establishing a competitive edge because some customers receive neg-
ative surplus. Second, different levels of usage rates have distinct cost

implications for manufacturers. In terms of percentage cost reduction,
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ore benefits are more likely to be gained from customers with high
sage rates. Finally, to reduce the cost-sharing ratio, manufacturers can
ncrease the markup on PM costs. Given the number of PM actions
uring the warranty period, changes in the cost parameters also lead
o changes in the cost-sharing ratio.

. Concluding remarks

This paper studies a new cost-sharing PM program for products
old with a 2-D warranty, and the customer is the one who decides
n the cost-sharing ratio. We construct two cost models, one for the
8

I

anufacturer’s PM scheduling problem in the warranty period and the
ther for the customer’s PM scheduling problem in the post-warranty
eriod. The optimal PM policies in these two models indicate that the
ailure intensity should be reduced to its lowest attainable level at
ach instant of PM. One difference is that the optimal PM schedule
n the post-warranty period may be nonperiodic: The customer will
efer the first PM action if the failure intensity at the end of the 2-
warranty is less than or equal to a certain threshold and otherwise

erform PM immediately. We find that the customer’s expected total
ost is related to the cost-sharing ratio through this failure intensity.
n the numerical study, we examine how the optimal cost-sharing
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Fig. 5. Customer’s expected total cost for different values of 𝑘.

atio and the cost benefits vary with product usage rate, highlight-
ng that offering customized cost-sharing PM programs is a win–win
trategy.

This study can be extended in several directions. First, we focus
nly on designing cost-sharing PM for a given usage rate. In many
pplications, however, a uniform cost-sharing ratio might be of interest
o manufacturers for ease of implementation. An important extension
ould be to investigate the optimal PM schedule and cost-sharing ratio
t the population level. In this scenario, a customer who is left with
egative surplus has no choice but to pay the shared cost. Another
nteresting extension would be to design a menu of PM schedules and
ost-sharing ratios to serve a population of customers when their usage
ates are unknown to manufacturers.

Second, we assume that PM can restore a product to an as-good-as-
ew condition. This assumption may not hold for a complex product
hose replacement cost is highly prohibitive. New models need to be
eveloped for cases where only imperfect PM is allowed. For example,
nder the current cost structure, we could assume that the lower bound
n the failure intensity increases with time or that the PM efficiency
ecreases with the number of PM actions. Optimal policies in those sit-
ations might be nonperiodic. In addition, because of safety concerns,
ome regulations require manufacturers to conduct at least one annual
afety inspection of their products. A direction for future research is
o consider an upper bound on the intervals between successive PM
ctions to ensure safety.

Third, automakers often provide free maintenance programs as
n incentive for customers to purchase their cars. It would thus be
nteresting to study a competition model that includes cost-sharing
M. In recent years, however, some automakers have begun to offer a
ariety of prepaid maintenance programs. Further research is needed
o investigate customer purchase behavior under these two types of
rograms. In addition, other cost-sharing rules and the manufacturer’s
ecisions on the cost markups would also be worth exploring.
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Appendix A. Proofs

Proof of Proposition 1. By substituting for 𝜆(𝑡) and rearranging terms,
we have
𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝)

= 𝑐
2

𝑛
∑

𝑖=1

(

𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)
𝑖−1
∑

𝑗=1
𝛿𝑗

−
𝑖−1
∑

𝑗=1
𝑥𝑗 + 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)

𝑖
∑

𝑗=1
𝛿𝑗 −

𝑖−1
∑

𝑗=1
𝑥𝑗

)

𝛿𝑖

+ 𝑐
2

(

𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)
𝑛
∑

𝑖=1
𝛿𝑖

−
𝑛
∑

𝑖=1
𝑥𝑖 + 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝑊 −

𝑛
∑

𝑖=1
𝑥𝑖

)

×

(

𝑊 −
𝑛
∑

𝑖=1
𝛿𝑖

)

+
𝑛
∑

𝑖=1
𝑝(𝑘 + 𝑏𝑥𝑖)

= 𝑐(𝜃2 + 𝜃3𝑟)
⎛

⎜

⎜

⎝

𝑛
∑

𝑖=1
𝛿𝑖

𝑖−1
∑

𝑗=1
𝛿𝑗 +

1
2

𝑛
∑

𝑖=1
𝛿2𝑖 +

𝑊 2

2
− 1

2

( 𝑛
∑

𝑖=1
𝛿𝑖

)2
⎞

⎟

⎟

⎠

+ 𝑛𝑝𝑘

− 𝑐

( 𝑛
∑

𝑖=1
𝛿𝑖

𝑖−1
∑

𝑗=1
𝑥𝑗 +

(

𝑊 −
𝑛
∑

𝑖=1
𝛿𝑖 −

𝑝𝑏
𝑐

) 𝑛
∑

𝑖=1
𝑥𝑖

)

+ 𝑐(𝜃0 + 𝜃1𝑟)𝑊 .

hen ∑𝑛
𝑖=1 𝛿𝑖 ≤ 𝑊 −𝑝𝑏∕𝑐, the coefficients of ∑𝑖

𝑗=1 𝑥𝑗 are all nonpositive.
o minimize 𝐶(𝑛, 𝜹,𝒙; 𝑟, 𝑝), we choose ∑𝑖

𝑗=1 𝑥𝑗 as large as possible, that
s, ∑𝑖

𝑗=1 𝑥𝑗 = (𝜃2+𝜃3𝑟)
∑𝑖

𝑗=1 𝛿𝑖. Solving for 𝑥𝑖 gives 𝑥∗𝑖 = (𝜃2+𝜃3𝑟)𝛿𝑖. □

roof of Proposition 2. We first prove that 𝐶(𝑛, 𝜹,𝒙∗; 𝑟, 𝑝) is a convex
unction of the vector 𝜹. Its Hessian matrix is given by

ess(𝐶) =

⎡

⎢

⎢

⎢

⎣

2 1 … 1
1 2 … 1
⋮ ⋮ ⋱ ⋮
1 1 … 2

⎤

⎥

⎥

⎥

⎦𝑛×𝑛

ith eigenvalues 1 of multiplicity 𝑛−1 and 𝑛+1 of multiplicity 1. Since
ll the eigenvalues are greater than zero, the Hessian matrix is positive
efinite.

We then solve the optimization problem using Lagrange multipliers.
he Lagrangian function is defined as

(𝜹,𝝁) = 𝐶(𝑛, 𝜹,𝒙∗; 𝑟, 𝑝) − 𝜇0

(

𝑊 −
𝑝𝑏
𝑐

−
𝑛
∑

𝑖=1
𝛿𝑖

)

−
𝑛
∑

𝑖=1
𝜇𝑖𝛿𝑖,

where 𝜇𝑖 ≥ 0, 𝑖 = 0,… , 𝑛, are a set of Lagrange multipliers. The optimal
solution must satisfy the following first-order conditions:

𝑐(𝜃2 + 𝜃3𝑟)

(

𝛿𝑖 −𝑊 +
𝑛
∑

𝑖=1
𝛿𝑖 +

𝑝𝑏
𝑐

)

+ 𝜇0 − 𝜇𝑖 = 0 for 𝑖 = 1,… , 𝑛,

0

(

𝑊 −
𝑝𝑏
𝑐

−
𝑛
∑

𝑖=1
𝛿𝑖

)

= 0, 𝜇𝑖𝛿𝑖 = 0 for 𝑖 = 1,… , 𝑛,

𝜇𝑖 ≥ 0 for 𝑖 = 0,… , 𝑛,
𝑛
∑

𝑖=1
𝛿𝑖 ≤ 𝑊 −

𝑝𝑏
𝑐
, 𝛿𝑖 ≥ 0 for 𝑖 = 1,… , 𝑛.

There are four cases to consider.

(i) If 𝜇0 = 0 and some 𝛿𝑖 > 0, then 𝜇𝑖 = 0. For any 𝑗 ≠ 𝑖, we have

𝛿𝑗 = 𝑊 −
𝑛
∑

𝑖=1
𝛿𝑖 −

𝑝𝑏
𝑐

+
𝜇𝑗

𝑐(𝜃2 + 𝜃3𝑟)
= 𝛿𝑖 +

𝜇𝑗
𝑐(𝜃2 + 𝜃3𝑟)

≥ 𝛿𝑖 > 0.

Therefore, 𝜇𝑗 = 0, and thus 𝛿𝑗 = 𝛿𝑖 =
𝑊
𝑛+1 − 𝑝𝑏

(𝑛+1)𝑐 . Since 𝛿𝑖 > 0,
we have 𝑊 > 𝑝𝑏∕𝑐.
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(ii) If 𝜇0 = 0 and all 𝛿𝑖 = 0, then all 𝜇𝑖 = 𝑐(𝜃2 + 𝜃3𝑟)(𝑝𝑏∕𝑐 − 𝑊 ).
Since 𝜇𝑖 ≥ 0, it follows that 𝑊 ≤ 𝑝𝑏∕𝑐. Moreover, because
∑𝑛

𝑖=1 𝛿𝑖 = 0 ≤ 𝑊 − 𝑝𝑏∕𝑐, we must have 𝑊 = 𝑝𝑏∕𝑐 and all 𝜇𝑖 = 0.
(iii) If 𝜇0 > 0 and some 𝛿𝑖 > 0, then 𝜇0 = −𝑐(𝜃2 + 𝜃3𝑟)𝛿𝑖 < 0, which

contradicts the inequality 𝜇0 > 0.
(iv) If 𝜇0 > 0 and all 𝛿𝑖 = 0, then 𝑊 − 𝑝𝑏∕𝑐 −

∑𝑛
𝑖=1 𝛿𝑖 = 𝑊 − 𝑝𝑏∕𝑐 = 0,

and thus 𝜇𝑖 = 𝜇0 > 0. So this solution is feasible. □

Proof of Proposition 3. We first treat 𝑛 as continuous. Differentiating
𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) with respect to 𝑛 yields

𝜕𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)
𝜕𝑛

= 𝑝𝑘 −
𝑐(𝜃2 + 𝜃3𝑟)(𝑊 − 𝑝𝑏∕𝑐)2

2(𝑛 + 1)2
.

We then calculate the second derivative as

𝜕2𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)
𝜕𝑛2

=
𝑐(𝜃2 + 𝜃3𝑟)(𝑊 − 𝑝𝑏∕𝑐)2

(𝑛 + 1)3
,

hich is nonnegative. Therefore, the cost function 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) is
onvex in 𝑛. When 𝑊 > 𝑝𝑏∕𝑐, 𝑛∗ is the solution to the equation
𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)∕𝜕𝑛 = 0. When 𝑛∗ > 0, the optimal integer value of
is either ⌊𝑛∗⌋ or ⌈𝑛∗⌉. When −1 < 𝑛∗ ≤ 0, we have 𝑛∗ = 0 because
(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) is increasing over [0,+∞). When 𝑊 = 𝑝𝑏∕𝑐, that is,
hen 𝑛∗ = −1, we also have 𝑛∗ = 0 because 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) increases

inearly with 𝑛. □

roof of Proposition 4. We use lattice-theoretic methods to show
onotone comparative statics. A sufficient condition is the submod-
larity or supermodularity of the cost function. A twice differentiable
unction is submodular if it has a negative cross derivative. (Supermod-
larity is defined by the opposite inequality.) We take 𝑛 as a continuous
ariable and regard 𝛿∗𝑖 , 𝑛∗, and 𝑛∗ as functions of the usage rate 𝑟. When
≤ 𝑈∕𝑊 , the cross-partial derivative of the cost function with respect

o 𝑛 and 𝑟 is

𝜕2𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)
𝜕𝑛𝜕𝑟

= −
𝑐𝜃3(𝑊 − 𝑝𝑏∕𝑐)2

2(𝑛 + 1)2
≤ 0.

herefore, 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) is submodular in (𝑛, 𝑟), and thus 𝑛∗(𝑟) is
increasing in 𝑟 (Topkis, 1998). Next, we show that the monotonicity
still holds for 𝑛∗(𝑟). Suppose that 𝑟′ < 𝑟 and that 𝑛∗(𝑟′) lies in the
interval (𝓁,𝓁+1], where 𝓁 is a nonnegative integer. When 𝑛∗(𝑟) ≥ 𝓁+1,
it is easy to see that 𝑛∗(𝑟) ≥ 𝑛∗(𝑟′). When 𝑛∗(𝑟′) ≤ 𝑛∗(𝑟) < 𝓁 + 1
and 𝑛∗(𝑟′) = 𝓁, the inequality is satisfied because 𝑛∗(𝑟) is either 𝓁 or
𝓁 + 1. When 𝑛∗(𝑟′) ≤ 𝑛∗(𝑟) < 𝓁 + 1 and 𝑛∗(𝑟′) = 𝓁 + 1, we have
𝐶(𝓁, 𝜹∗,𝒙∗; 𝑟′, 𝑝) > 𝐶(𝓁 + 1, 𝜹∗,𝒙∗; 𝑟′, 𝑝). Moreover, by submodularity,
we have

𝐶(𝓁, 𝜹∗,𝒙∗; 𝑟′, 𝑝) + 𝐶(𝓁 + 1, 𝜹∗,𝒙∗; 𝑟, 𝑝)

≤ 𝐶(𝓁, 𝜹∗,𝒙∗; 𝑟, 𝑝) + 𝐶(𝓁 + 1, 𝜹∗,𝒙∗; 𝑟′, 𝑝).

herefore, 𝐶(𝓁, 𝜹∗,𝒙∗; 𝑟, 𝑝) > 𝐶(𝓁 + 1, 𝜹∗,𝒙∗; 𝑟, 𝑝), which implies that
𝑛∗(𝑟) = 𝓁 + 1. In summary, 𝑛∗(𝑟) is increasing in 𝑟. Since 𝛿∗𝑖 (𝑟) =
𝑊

(𝑛+1) −
𝑝𝑏

(𝑛+1)𝑐 , it is decreasing in 𝑟.
When 𝑟 > 𝑈∕𝑇 , taking the cross-partial derivative, we have the

ollowing:

𝜕2𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)
𝜕𝑛𝜕𝑟

= 𝑐
2(𝑛 + 1)2

(

𝑈
𝑟
−

𝑝𝑏
𝑐

)(

𝜃3𝑝𝑏
𝑐

+
2𝜃2𝑈
𝑟2

+
𝜃3𝑈
𝑟

)

≥ 0,

here the inequality holds because 𝑈∕𝑟 ≥ 𝑝𝑏∕𝑐. Therefore, 𝐶(𝑛, 𝜹∗,𝒙∗;
, 𝑝) is supermodular in (𝑛, 𝑟). Using a similar argument as above, we
an show that 𝑛∗(𝑟) is decreasing in 𝑟. □
10
roof of Proposition 5. Substituting for 𝜆(𝑡) and rearranging terms
ives

𝐻(𝑚, 𝝃, 𝒚; 𝜆(𝑊 ))

= 𝛼𝑐
2

𝑚
∑

𝑖=1

(

𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)
𝑖−1
∑

𝑗=1
𝜉𝑗

−
𝑖−1
∑

𝑗=1
𝑦𝑗 + 𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)

𝑖
∑

𝑗=1
𝜉𝑗 −

𝑖−1
∑

𝑗=1
𝑦𝑗

)

𝜉𝑖

+ 𝛼𝑐
2

(

𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)
𝑚
∑

𝑖=1
𝜉𝑖

−
𝑚
∑

𝑖=1
𝑦𝑖 + 𝜆(𝑊 ) + (𝜃2 + 𝜃3𝑟)(𝑇 −𝑊 ) −

𝑚
∑

𝑖=1
𝑦𝑖

)

×

(

𝑇 −𝑊 −
𝑚
∑

𝑖=1
𝜉𝑖

)

+
𝑚
∑

𝑖=1
𝛽(𝑘 + 𝑏𝑦𝑖)

= 𝛼𝑐(𝜃2 + 𝜃3𝑟)
⎛

⎜

⎜

⎝

𝑚
∑

𝑖=1
𝜉𝑖

𝑖−1
∑

𝑗=1
𝜉𝑗 +

1
2

𝑚
∑

𝑖=1
𝜉2𝑖 +

(𝑇 −𝑊 )2

2
− 1

2

( 𝑚
∑

𝑖=1
𝜉𝑖

)2
⎞

⎟

⎟

⎠

+ 𝑚𝛽𝑘

− 𝛼𝑐

( 𝑚
∑

𝑖=1
𝜉𝑖

𝑖−1
∑

𝑗=1
𝑦𝑗 +

(

𝑇 −𝑊 −
𝑚
∑

𝑖=1
𝜉𝑖 −

𝛽𝑏
𝛼𝑐

) 𝑚
∑

𝑖=1
𝑦𝑖

)

+ 𝛼𝑐(𝑇 −𝑊 )𝜆(𝑊 ).

When ∑𝑚
𝑖=1 𝜉𝑖 ≤ 𝑇 − 𝑊 − 𝛽𝑏

𝛼𝑐 , the coefficients of ∑𝑖
𝑗=1 𝑦𝑗 are all

nonpositive. Hence, we choose ∑𝑖
𝑗=1 𝑦𝑗 as large as possible, that is,

∑𝑖
𝑗=1 𝑦𝑗 = 𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)

∑𝑖
𝑗=1 𝜉𝑖. It then follows that

𝑦∗1 = 𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝜉1 and all other 𝑦∗𝑖 = (𝜃2 + 𝜃3𝑟)𝜉𝑖. □

Proof of Proposition 6. It is straightforward to show that 𝐻(𝑚, 𝝃, 𝒚∗;
𝜆(𝑊 )) is a convex function of the vector 𝝃. To find the optimal value
f 𝝃, we write the Lagrangian of the minimization problem as:

(𝝃,𝝁) = 𝐻(𝑚, 𝝃, 𝒚∗; 𝜆(𝑊 )) − 𝜇0

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

−
𝑚
∑

𝑖=1
𝜉𝑖

)

−
𝑚
∑

𝑖=1
𝜇𝑖𝜉𝑖,

here 𝜇𝑖 ≥ 0, 𝑖 = 0,… , 𝑚, are a set of Lagrange multipliers. The
irst-order conditions for optimality are

𝑐(𝜃2 + 𝜃3𝑟)

(

𝜉1 − 𝑇 +𝑊 +
𝑚
∑

𝑖=1
𝜉𝑖 +

𝛽𝑏
𝛼𝑐

)

+𝛼𝑐
(

𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟
)

+ 𝜇0 − 𝜇1 = 0, (A.1)

𝑐(𝜃2 + 𝜃3𝑟)

(

𝜉𝑖 − 𝑇 +𝑊 +
𝑚
∑

𝑖=1
𝜉𝑖 +

𝛽𝑏
𝛼𝑐

)

+ 𝜇0 − 𝜇𝑖 = 0 for 𝑖 = 2,… , 𝑚,

(A.2)

0

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

−
𝑚
∑

𝑖=1
𝜉𝑖

)

= 0, 𝜇𝑖𝜉𝑖 = 0 for 𝑖 = 1,… , 𝑚,

𝑖 ≥ 0 for 𝑖 = 0,… , 𝑚,
𝑚

𝑖=1
𝜉𝑖 ≤ 𝑇 −𝑊 −

𝛽𝑏
𝛼𝑐

, 𝜉𝑖 ≥ 0 for 𝑖 = 1,… , 𝑚.

There are two cases to consider.

(i) 𝜇1 = 0. Suppose that 𝜇𝑖 > 0 for some 𝑖 = 2,… , 𝑚. Then we have
𝜉𝑖 = 0. From Eqs. (A.1) and (A.2), it follows that 𝜇𝑖 = −𝛼𝑐(𝜃2 +
𝜃3𝑟)𝜉1−𝛼𝑐

(

𝜆(𝑊 )−𝜃0−𝜃1𝑟
)

≤ 0, which contradicts 𝜇𝑖 > 0. Hence,
𝜇𝑖 = 0 for all 𝑖 = 2,… , 𝑚. If 𝜇0 > 0, then ∑𝑚

𝑖=1 𝜉𝑖 = 𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ,

and from Eq. (A.2) we have 𝜇0 = −𝛼𝑐(𝜃2 + 𝜃3𝑟)𝜉𝑖 ≤ 0, which is
also a contradiction. Therefore, 𝜇0 = 0. By solving the first-order
conditions, we get

𝜉∗𝑖 =

⎧

⎪

⎨

⎪

𝑇−𝑊
𝑚+1 − 𝛽𝑏

(𝑚+1)𝛼𝑐 − 𝑚(𝜆(𝑊 )−𝜃0−𝜃1𝑟)
(𝑚+1)(𝜃2+𝜃3𝑟)

, 𝑖 = 1,

𝑇−𝑊 − 𝛽𝑏 + 𝜆(𝑊 )−𝜃0−𝜃1𝑟 , 𝑖 = 2,… , 𝑚.

⎩

𝑚+1 (𝑚+1)𝛼𝑐 (𝑚+1)(𝜃2+𝜃3𝑟)
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This solution is feasible if and only if 𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 ≥ 𝑚(𝜆(𝑊 )−𝜃0−𝜃1𝑟)

𝜃2+𝜃3𝑟
,

which is equivalent to 𝜆(𝑊 ) ≤ 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

.

(ii) 𝜇1 > 0. In this case, 𝜉1 = 0. Suppose that 𝜇0 > 0, which
implies that ∑𝑚

𝑖=1 𝜉𝑖 = 𝑇 − 𝑊 − 𝛽𝑏
𝛼𝑐 . By Eq. (A.2), we have 𝜇𝑖 =

𝜇0+𝛼𝑐(𝜃2+𝜃3𝑟)𝜉𝑖 > 0 for 𝑖 = 2,… , 𝑚. So all 𝜉𝑖 = 0 and 𝑇−𝑊 = 𝛽𝑏
𝛼𝑐 .

If 𝑇 − 𝑊 > 𝛽𝑏
𝛼𝑐 , we obtain a contradiction, and thus 𝜇0 = 0.

Suppose that 𝜇𝑖 > 0 for some 𝑖 = 2,… , 𝑚. Then 𝜉𝑖 = 0. It follows
from Eq. (A.2) that 𝜇𝑖 = 𝛼𝑐(𝜃2 + 𝜃3𝑟)

(

−𝑇 +𝑊 +
∑𝑚

𝑖=1 𝜉𝑖 +
𝛽𝑏
𝛼𝑐

)

≤
0, which contradicts the assumption. Hence, we have 𝜇𝑖 = 0 for
𝑖 = 2,… , 𝑚. Solving the first-order conditions yields

𝜉∗𝑖 =

{

0, 𝑖 = 1,
𝑇−𝑊
𝑚 − 𝛽𝑏

𝑚𝛼𝑐 , 𝑖 = 2,… , 𝑚.

Notice that with 𝑇 − 𝑊 = 𝛽𝑏
𝛼𝑐 , this solution coincides with

the solution 𝜉∗𝑖 = 0. Substituting 𝜉∗𝑖 into Eq. (A.1) gives 𝜇1 =
𝛼𝑐

(

𝜆(𝑊 )−𝜃0−𝜃1𝑟
)

+𝛼𝑐(𝜃2+𝜃3𝑟)
(

𝛽𝑏
𝑚𝛼𝑐 − 𝑇−𝑊

𝑚

)

. To ensure 𝜇1 > 0,

we need 𝜆(𝑊 ) > 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

. □

roof of Proposition 7. Differentiating 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) with respect
to 𝑚 yields

𝜕𝐻
𝜕𝑚

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛽𝑘 − 𝛼𝑐(𝜃2+𝜃3𝑟)
2(𝑚+1)2

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐 + 𝜆(𝑊 )−𝜃0−𝜃1𝑟

𝜃2+𝜃3𝑟

)2
,

if 𝑚 ≤ 𝜃2+𝜃3𝑟
𝜆(𝑊 )−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

,

𝛽𝑘 − 𝛼𝑐(𝜃2+𝜃3𝑟)
2𝑚2

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)2
, otherwise.

enote 𝑚̃∗ as the solution to the continuous relaxation. When 𝑇 −𝑊 >
𝛽𝑏
𝛼𝑐 and 𝜕𝐻

𝜕𝑚
|

|

|𝑚=0
≤ 0, 𝑚̃∗ solves the equation 𝜕𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 ))∕𝜕𝑚 = 0.

hen 𝑇 − 𝑊 > 𝛽𝑏
𝛼𝑐 and 𝜕𝐻

𝜕𝑚
|

|

|𝑚=0
> 0, 𝑚̃∗ = 0. From the second

derivative, it follows that 𝑚∗ is determined by ⌊ 𝑚̃∗
⌋ or ⌈ 𝑚̃∗

⌉. Because
𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 ))∕𝜕𝑚 is nonincreasing in 𝜆(𝑊 ), 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 ))
s submodular, and thus 𝑚̃∗ is increasing in 𝜆(𝑊 ). Using a similar
rgument as in the proof of Proposition 4, we can show that 𝑚∗ is also
ncreasing in 𝜆(𝑊 ). If 𝜆(𝑊 ) = 𝜃0 + 𝜃1𝑟, then by definition, 𝑚∗ = 𝑚. For
ny 𝑚 ≥ 𝑚, if 𝜆(𝑊 ) > 𝜃0 + 𝜃1𝑟 +

𝜃2+𝜃3𝑟
𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

, then by Proposi-
ion 6, a PM action occurs at time 𝑊 , reducing the failure intensity to
0 + 𝜃1𝑟. Since the optimal number of subsequent PM actions is 𝑚, we

have 𝑚∗ = 𝑚 + 1. If 𝜃0 + 𝜃1𝑟 < 𝜆(𝑊 ) ≤ 𝜃0 + 𝜃1𝑟 +
𝜃2+𝜃3𝑟

𝑚

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

,
then 𝑚∗ increases from 𝑚 to 𝑚 + 1. When 𝑇 −𝑊 = 𝛽𝑏

𝛼𝑐 , it is easy to see
hat 𝑚∗ = 0. □

roof of Proposition 8. To prove part (a), we first note that when
≤ 𝑐𝑊 ∕𝑏,

𝜕𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝)
𝜕𝑝

= 𝑘𝑛 +
𝑏𝑛(𝜃2 + 𝜃3𝑟)

𝑛 + 1

(

𝑊 −
𝑝𝑏
𝑐

)

≥ 0.

ence, 𝐶(𝑛, 𝜹∗,𝒙∗; 𝑟, 𝑝) is increasing in 𝑝. We emphasize the dependence
f 𝑛∗(𝑟) on the cost-sharing ratio 𝑝 using the notation 𝑛∗(𝑟, 𝑝). For any

𝑝′ < 𝑝, we have

𝐶(𝑛∗(𝑟, 𝑝), 𝜹∗,𝒙∗; 𝑟, 𝑝) ≥ 𝐶(𝑛∗(𝑟, 𝑝), 𝜹∗,𝒙∗; 𝑟, 𝑝′) ≥ 𝐶(𝑛∗(𝑟, 𝑝′), 𝜹∗,𝒙∗; 𝑟, 𝑝′),

hich implies that 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 𝑝) is also increasing in 𝑝. When 𝑝 >
𝑊 ∕𝑏, since 𝑛∗(𝑟, 𝑝) = 0, 𝐶(𝑛∗, 𝜹∗,𝒙∗; 𝑟, 𝑝) does not change with 𝑝.
he second part holds because the right-hand side of Inequality (1) is
ecreasing in 𝑝 when 𝑝 ≤ 𝑐𝑊 ∕𝑏 and its left-hand side is increasing in
. To show lim𝑝→0+ 𝑛∗(𝑟, 𝑝) = +∞, note that lim𝑝→0+

𝑐(𝜃2+𝜃3𝑟)(𝑊 −𝑝𝑏∕𝑐)2

2𝑝𝑘 =
∞. For part (c), it is clear that

∗ = 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝑊 − (𝜃2 + 𝜃3𝑟)
(

𝑊 −
𝑝𝑏
𝑐

)(

1 − 1
𝑛∗(𝑟, 𝑝) + 1

)

s increasing in 𝑝, and by part (b), lim𝑝→0+ 𝜆(𝑊 ) = 𝜃0 + 𝜃1𝑟. Finally,
consider part (d). For any 𝜆′ < 𝜆, we have 𝜃2+𝜃3𝑟

(

𝑇 −𝑊 − 𝛽𝑏
)

≤

11

𝜆−𝜃0−𝜃1𝑟 𝛼𝑐
𝜃2+𝜃3𝑟
𝜆′−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

. When 0 ≤ 𝑚 ≤ 𝜃2+𝜃3𝑟
𝜆−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

, differ-
entiating 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 )) with respect to 𝜆(𝑊 ) yields
𝜕𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆(𝑊 ))

𝜕𝜆(𝑊 )

= 𝛽𝑏 + 𝛼𝑐
𝑚 + 1

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

−
𝑚(𝜆(𝑊 ) − 𝜃0 − 𝜃1𝑟)

𝜃2 + 𝜃3𝑟

)

≥ 0

for 𝜆(𝑊 ) ≤ 𝜆. By the mean value theorem, 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆) −
𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆′) ≥ 0. When 𝜃2+𝜃3𝑟

𝜆−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

< 𝑚 ≤ 𝜃2+𝜃3𝑟
𝜆′−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

, we have

𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆) −𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆′)

=
𝛼𝑐(𝜃2 + 𝜃3𝑟)

2𝑚

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

)2

−
𝛼𝑐(𝜃2 + 𝜃3𝑟)
2(𝑚 + 1)

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

+
𝜆′ − 𝜃0 − 𝜃1𝑟
𝜃2 + 𝜃3𝑟

)2

+
𝛼𝑐(𝜆′ − 𝜃0 − 𝜃1𝑟)2

2(𝜃2 + 𝜃3𝑟)
+ 𝛽𝑏(𝜆 − 𝜆′)

=
𝛼𝑐(𝜃2 + 𝜃3𝑟)
2𝑚(𝑚 + 1)

(

𝑇 −𝑊 −
𝛽𝑏
𝛼𝑐

−
𝑚(𝜆′ − 𝜃0 − 𝜃1𝑟)

𝜃2 + 𝜃3𝑟

)2
+ 𝛽𝑏(𝜆 − 𝜆′)

≥ 0.

When 𝜃2+𝜃3𝑟
𝜆′−𝜃0−𝜃1𝑟

(

𝑇 −𝑊 − 𝛽𝑏
𝛼𝑐

)

< 𝑚, we also have 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆) −
(𝑚, 𝝃∗, 𝒚∗; 𝜆′) ≥ 0. It then follows that for any 𝜆′ < 𝜆,

(𝑚∗(𝜆), 𝝃∗, 𝒚∗; 𝜆) ≥ 𝐻(𝑚∗(𝜆), 𝝃∗, 𝒚∗; 𝜆′) ≥ 𝐻(𝑚∗(𝜆′), 𝝃∗, 𝒚∗; 𝜆′),

where we use the notation 𝑚∗(𝜆(𝑊 )) to make explicit the dependence
on 𝜆(𝑊 ). □

Appendix B. Algorithm to determine the optimal cost-sharing ra-
tio

Input: 𝑟, 𝑊 , 𝑈 , 𝑇 , 𝐿, 𝜃0, 𝜃1, 𝜃2, 𝜃3, 𝑐, 𝑘, 𝑏, 𝛼, 𝛽 (𝑟 < 𝑈∕𝑊 ≤ 𝐿∕𝑇 )
utput: 𝑝∗

1: 𝑝 ← 1
2: 𝛥𝑝 ← 0.01
3: 𝑚𝑖𝑛 ← +∞
4: 𝑚 ← 0
5: while (𝑚 + 1)(𝑚 + 2) < 𝛼𝑐(𝜃2+𝜃3𝑟)(𝑇−𝑊 −𝛽𝑏∕(𝛼𝑐))2

2𝛽𝑘 do
6: 𝑚 ← 𝑚 + 1
7: end while
8: while 𝑝 > 0 do
9: 𝑛∗ ← 0

10: while (𝑛∗ + 1)(𝑛∗ + 2) < 𝑐(𝜃2+𝜃3𝑟)(𝑊 −𝑝𝑏∕𝑐)2

2𝑝𝑘 do
11: 𝑛∗ ← 𝑛∗ + 1
2: end while
3: 𝑥∗𝑖 ← (𝜃2 + 𝜃3𝑟)(

𝑊
𝑛∗+1 − 𝑝𝑏

(𝑛∗+1)𝑐 )

14: 𝜆∗ ← 𝜃0 + 𝜃1𝑟 + (𝜃2 + 𝜃3𝑟)𝑊 −
∑𝑛∗

𝑖=1 𝑥
∗
𝑖

5: calculate 𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆∗) and 𝐻(𝑚 + 1, 𝝃∗, 𝒚∗; 𝜆∗) using Equa-
tions (3) and (4)

16: 𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆∗) ← min{𝐻(𝑚, 𝝃∗, 𝒚∗; 𝜆∗),𝐻(𝑚 + 1, 𝝃∗, 𝒚∗; 𝜆∗)}
17: if 𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆∗) + (1 − 𝑝)

∑𝑛∗
𝑖=1(𝑘 + 𝑏𝑥∗𝑖 ) < 𝑚𝑖𝑛 then

18: 𝑚𝑖𝑛 ← 𝐻(𝑚∗, 𝝃∗, 𝒚∗; 𝜆∗) + (1 − 𝑝)
∑𝑛∗

𝑖=1(𝑘 + 𝑏𝑥∗𝑖 )
9: 𝑝∗ ← 𝑝
0: end if
1: 𝑝 ← 𝑝 − 𝛥𝑝
2: end while
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