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ABSTRACT
This article considers Preventive Maintenance (PM) under a two-dimensional (2-D) warranty con-
tract with time and usage limits. From a manufacturer’s point of view, we develop a dynamic
maintenance model with a random horizon to include the impact of random and dynamic usage
rates on PM decisions. The model treats the cumulative amount of usage as a state variable that
provides information about the failure rate and the expiration of the 2-D warranty. We character-
ize the optimal PM policy by a sequence of usage-dependent failure rate thresholds. Each thresh-
old is a function of the cumulative usage. Our failure rate threshold policy chooses one of the
following two actions in each period: performing perfect PM or no PM. Specifically, the manufac-
turer should bring the failure rate back to its original level when it exceeds the threshold in the
corresponding period. This policy is also optimal under a constant usage rate. In the numerical
experiments, we demonstrate the effectiveness of the proposed policy and conduct a sensitivity
analysis to investigate how this policy is affected by the model parameters.
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1. Introduction

Sensor technology allows manufacturers to collect more data
than ever before. Traditionally, manufacturers have had dif-
ficulty accessing product usage data after the sale of a prod-
uct. Through the use of built-in sensors, such data from the
field can be more easily and efficiently collected.
Manufacturers analyze usage data to better predict future
events and achieve substantial cost savings. At the same
time, sensor-embedded products can provide a better experi-
ence for customers.

In the real world, many companies adopt sensor technol-
ogy to develop new maintenance services. For example, in
the elevator and escalator industry, KONE has recently
started putting sensors in its products. In 2017, KONE
launched the 24/7 Connected Services project, in which it
remotely monitors product components and evaluates their
health conditions in real time. This project aims to take pro-
active maintenance actions before a shutdown occurs (see
KONE, 2019). Another example is Pivotal in the automobile
industry. It looks at sensor data such as diagnostic trouble
codes to predict when automobile parts will fail and to help
decide when maintenance jobs should be initiated (see
Ramanujam, 2016). Both companies benefit greatly from
their innovative maintenance services.

This article considers Preventive Maintenance (PM)
under a two-dimensional (2-D) warranty contract when
manufacturers can periodically monitor the cumulative
amount of product use. The interplay between PM and 2-D
warranties has attracted considerable interest in the past few

years. In this research area, most of the papers have focused
on periodic PM (see, e.g., Wang et al., 2015; Wang, Zhou
and Peng, 2017; Wang, Liu, Li and Li, 2017). A maintenance
interval is often measured in units of time or cumulative
usage (Su and Wang 2016; Wang and Su, 2016; Wang et al.,
2020). Several researchers have incorporated different levels
of PM effort into their policies. Shahanaghi et al., (2013)
determined the optimal number of PM actions and the opti-
mal effort level of each action. Under a 2-D lease contract,
Iskandar and Husniah (2017) jointly optimized the number
of PM actions and the PM interval for every possible usage
rate. In their model, the levels of PM effort are equal to the
increments of an increasing failure rate between successive
PM actions.

Limited research has been conducted with regard to the
non-periodic PM in the setting of a 2-D warranty. Huang
et al., (2017) used different PM services including non-peri-
odic PM to customize a 2-D extended warranty. Non-peri-
odic PM has also been considered in some studies on
designing a 2-D warranty contract (Huang and Yen, 2009;
Huang et al., 2013; Huang et al., 2015). These studies deter-
mined the two warranty parameters under a pre-specified
PM policy to maximize a manufacturer’s profit.

Nearly all the above papers assumed a constant usage
rate for a specific product. However, sometimes a linear
usage path does not provide a good representation of a real
usage process. In this case, non-constant usage rates can be
taken into consideration. Several methods have been used in
the literature to model non-constant usage rates, such as the
logistic function (Eliashberg et al., 1997), the accelerated
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failure time model (e.g., Ye et al., 2013; Wang et al., 2019),
and a weighted prediction model (Tong et al., 2017).
Singpurwalla and Wilson (1993) treated usage rates as being
random and dynamic. They described a general usage pro-
cess by three sets of non-negative random variables, i.e., the
lengths of periods of non-use and use and the usage rate in
each period of use. The usage path in their setting is piece-
wise linear, with the slope of each piece being the realized
usage rate in the corresponding period. Their method, how-
ever, appears to be analytically intractable. One way to sim-
plify it is to exclude usage rates, as in De Jonge and
Jakobsons (2018), who presented a Markov switching model
where both active and idle periods are assumed to be expo-
nentially distributed. Another way is to divide a planning
horizon into periods of equal length and consider the usage
rate of each period as the only source of uncertainty. This
method is especially useful when manufacturers conduct
periodic monitoring to understand how a product is used.

To describe the effect of usage (a time-dependent covari-
ate) on failure time, Eliashberg et al., (1997) and
Singpurwalla and Wilson (1998) adopted an additive hazards
model. For other types of monitoring information, many
degradation models have been developed in the maintenance
literature. We refer readers to Ye and Xie (2015) and
Alaswad and Xiang (2017) for detailed reviews. Common
continuous models include Wiener processes (e.g., Sun
et al., 2018; Sun et al., 2020), gamma processes (e.g., Zhao
et al., 2019; Wu and Castro, 2020), and inverse Gaussian
processes (e.g., Chen et al., 2015, Shang et al., 2018).
Markov decision process models have been applied to main-
tenance problems that involve discrete degradation states
(e.g., Kurt and Kharoufeh, 2010). Shi et al., (2019) consid-
ered an infinite-horizon problem for the multi-level PM
with complex effects. At each decision time, they determined
whether to perform PM and, if so, at what level.

In this article, we consider a manufacturer who performs
PM on a product or a component based on usage informa-
tion obtained through periodic monitoring to reduce the
cost of honoring a 2-D warranty. With this auxiliary infor-
mation, the manufacturer can better assess product reliabil-
ity and predict when the 2-D warranty will expire. At the
beginning of each period, the cumulative usage of the

product is updated to learn about its failure rate. Then the
manufacturer decides whether to maintain the product in
the current period and to what level to reduce the failure
rate when a maintenance event occurs. We show the exist-
ence and optimality of a failure rate threshold policy. We
also examine how product usage affects the decisions about
PM times and levels of PM effort.

This article makes the following contributions to the lit-
erature. First, we develop a dynamic programming model
that incorporates random and dynamic usage rates of a
product under periodic monitoring. Second, such non-con-
stant usage rates, together with the setup cost of PM, lead to
a new PM policy with usage-dependent failure rate thresh-
olds. Under this policy, maintenance actions may be per-
formed non-periodically. Third, although similar decisions
have been considered in some dynamic maintenance models
(e.g., Jack and Murthy, 2002; Shi et al., 2019), we focus on
the PM in the context of a 2-D warranty. Since there is a
usage limit on warranty coverage, our model is developed
over a random horizon. Table 1 summarizes the current art-
icle and the key literature.

The outline of this article is as follows. In Section 2, we
discuss the dynamics of a usage process and formulate a sto-
chastic PM model. In Section 3, we show that a failure rate
threshold policy is optimal. This section also describes a sys-
tem under a constant usage rate. In Section 4, we give a
numerical study for more insight. Finally, we conclude with
a summary and some suggestions for future research.

2. Problem formulation

We consider a manufacturer who performs PM on a prod-
uct or a component that is covered by a 2-D warranty con-
tract. This warranty comes with a usage limit U and an age
limit T (see Table 2 for a summary of notation). It expires
when either the cumulative usage or the age of the product
reaches their corresponding limits. After that, the manufac-
turer is not obliged to repair the product. Therefore, the 2-
D warranty protects the manufacturer against high amounts
of product usage, which may lead to frequent failures.

Table 1. Comparison of current article with the key literature.

Topic Maintenance type Usage rate
Setupcost?

Paper PM 2-D warranty Periodic Non-periodic Constant Dynamic

Wang et al. (2015) � � � �
Wang, Zhou and Peng (2017) � � � �
Wang, Liu, Liu and Li (2017) � � �
Wang and Su (2016) � � �
Su and Wang (2016) � � �
Wang et al. (2020) � � �
Shahanaghi et al. (2013) � � � �
Iskandar and Husniah (2017) � � � �
Huang et al. (2017) � � �
Huang and Yen (2009) � � �
Huang et al. (2013) � � �
Huang et al. (2015) � � �
Shi et al. (2019) � �
Jack and Murthy (2002) � � �
This paper � � � �
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2.1. State dynamics

We divide the warranty duration into T periods of equal
length. We denote the usage rate in period t as Rt with a
density function f ð�Þ and a finite mean r. Our maintenance
planning model has two state variables: the cumulative usage
and the failure rate of the product. Let ut be the cumulative
usage at the beginning of period t. Then after one period,
we have utþ1 ¼ ut þ Rt: The uncertainty of Rt is resolved
once the manufacturer observes the value of utþ1 through
periodic monitoring. Given a sequence of usage rate realiza-
tions frtgTt¼1, the cumulative usage follows a piecewise linear
path.

To describe the effect of the cumulative usage on the fail-
ure rate, we assume that an additive hazards model holds
(see, for example, Eliashberg et al., 1997; Singpurwalla and
Wilson, 1998). The failure rate at time t is given by kðtÞ ¼
k0ðtÞ þ gMðtÞ, where k0ðtÞ is a baseline failure rate that
describes deterioration due to natural causes, and M(t) is
the cumulative usage of a product. All products or a batch
of products are assumed to share the same baseline or the-
oretical failure rate. However, on top of the baseline failure
rate, different usage levels may induce an additive failure
rate that is adjusted by the cumulative usage of a particular
product. We can estimate the baseline failure rate k0ðtÞ and
the usage deterioration coefficient g in a laboratory test.

We next adapt the additive hazards model for use in our
discrete-time setting. We assume a constant baseline failure
rate k. That is, if the product were to be left unused, its fail-
ure rate would stay the same. A baseline failure rate that is

linear in time can be easily incorporated into our failure
rate function by adding a constant to the random variable
Rt. Let kt be the failure rate at the beginning of period t.
Then, the transition dynamics of the failure rate are written
as ktþ1 ¼ k þ gutþ1 ¼ k þ gðut þ RtÞ ¼ kt þ gRt: The last
equality shows that after one period the failure rate grows
by a random amount of gRt:

We assume that a PM action directly reduces the failure
rate and that maintenance time is negligible. Let ht be the
failure rate right after the PM of period t. This variable is
referred to as the reduce-down-to level. We also assume that
in each period the manufacturer can restore the failure rate
to its original level; thus, we have k � ht � kt: When ht ¼
k, a perfect PM action (replacement) is taken. When k <
ht < kt , PM is imperfect. When ht ¼ kt , PM is not per-
formed at the beginning of this period, i.e., no technician is
sent to provide PM. We describe the transition dynamics of
the failure rate in the presence of PM as ktþ1 ¼ kt � ðkt �
htÞ þ gRt ¼ ht þ gRt , where kt � ht corresponds to the
maintenance effort. We assume that when reducing the fail-
ure rate by kt � ht , the manufacturer incurs a cost of kþ
bðkt � htÞ, where k is the setup cost and b is the marginal
maintenance cost. Jack and Murthy (2002) and Yeh and
Chang (2007) made the same assumption.

2.2. Dynamic programming formulation

We now present a dynamic programming model for the PM
under a 2-D warranty. At the beginning of each period, the
manufacturer first observes the cumulative usage ut to know
the usage rate in the previous period. Then, the manufac-
turer calculates the failure rate kt and finds a value of the
reduce-down-to level ht that minimizes the expected total
cost over the remainder of the planning horizon. Note that
one can alternatively view the maintenance effort kt � ht as
the decision variable. However, it is more convenient to
work with the reduce-down-to level.

We assume that failures follow a non-homogeneous
Poisson process and that they are rectified by minimal
repairs. By minimal, we mean that the failure rate stays
unchanged after repairs. Each repair costs a constant c.
Denote the expected repair cost of period t by Lðht , utÞ: The
first parameter of this function is ht—instead of kt—because
failures in period t occur after the action of PM. From the
reliability theory, we have

Lðht , utÞ ¼
ðU�ut

0
cf ðrtÞ

ð1
0
ðht þ grtsÞdsdrt

þ
ðþ1

U�ut

cf ðrtÞ
ðU�ut

rt

0
ðht þ grtsÞdsdrt: (1)

For each of the two terms in Equation (1), we first inte-
grate with respect to s, which represents the time since the
beginning of period t, and then rt, which represents a pos-
sible usage rate. The first and second inner integrals are the
expected numbers of failures in period t for lines 1 and 2 in
Figure 1, respectively. When the usage rate realization rt is
greater than U � ut , we only count the expected number of

Table 2. Summary of notation.

Symbol Definition

U Usage limit of the 2-D warranty
T Age limit of the 2-D warranty
Rt Random usage rate of period t
fðrtÞ Density function of Rt
r Expected value of Rt
k Baseline failure rate
ut Cumulative usage at the beginning of period t
kt Failure rate at the beginning of period t
ht Failure rate after the PM of period t (decision variable)
g Usage deterioration coefficient in the additive

hazards model
k Setup cost of PM
b Marginal maintenance cost
c Constant cost per repair
Lðht , utÞ Expected one-period repair cost
Jtðkt , utÞ Manufacturer’s minimum expected total cost over

ft, t þ 1, :::, T þ 1g, given that the 2-D warranty is
valid and that the PM
decision in period t has not been made yet

Wtðht , utÞ Manufacturer’s minimum expected total cost over
ft, t þ 1, :::, T þ 1g, given that the 2-D warranty is
valid and that the PM decision in period t has just
been made

Gtðht , utÞ Wtðht , utÞ � bht
Htðkt , utÞ minfGtðkt , utÞ, mink � ht � ktk þ Gtðht , utÞg
u�t Threshold of the cumulative usage in period t
t� Time period after which no PM actions should

be performed
stðutÞ Failure rate threshold in period t
cðutÞ Slope of Lðht , utÞ
qðutÞ Intercept of Lðht , utÞ
cðutÞ þ atðutÞ � b Slope of Gtðht , utÞ for any ut 2 ½u�tþ1,U�
btðutÞ Intercept of Gtðht , utÞ for any ut 2 ½u�tþ1,U�
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failures in the interval ½0, ðU � utÞ=rt� because after this
period of time, the 2-D warranty expires.

Let Jtðkt , utÞ denote the manufacturer’s minimum
expected total cost over ft, t þ 1, :::,T þ 1g, given that the
2-D warranty is valid and that the PM decision in period t
has not yet been made. Note that period Tþ 1 corresponds
to the end of period T. At the decision point, we have infor-
mation about kt and ut. Let Wtðht , utÞ denote the manufac-
turer’s minimum expected total cost over
ft, t þ 1, :::,T þ 1g, given that the 2-D warranty is valid and
that the PM decision in period t has just been made. We
now know the values of ht and ut. Based on the definitions
of these two cost-to-go functions, we have:

Jtðkt , utÞ ¼ min Wtðkt , utÞ, min
k�ht�kt

kþ bðkt � htÞ þWtðht , utÞ
o�

(2)

and

Wtðht , utÞ ¼ Lðht , utÞ þ
ðU�ut

0
Jtþ1ðht þ grt , ut þ rtÞf ðrtÞdrt:

(3)

Equation (2) shows the manufacturer’s decision whether
or not to maintain the product in period t. If no mainten-
ance action is taken, then the first parameter of Wt will get
the value of kt. Otherwise, the manufacturer needs to solve
the inner minimization problem to reduce the failure rate to
an optimal level. In this case, the manufacturer incurs a
maintenance cost and the minimum expected total cost
from the moment after the PM to the end of period T. The
best of these two options is selected in the outer
minimization.

In Equation (3), the value function Wtðht , utÞ is the sum
of the expected one-period repair cost and the minimum
expected total cost from the next period onward. The upper
limit of the integral is U � ut , as Jtþ1ðktþ1, utþ1Þ exists only
when the 2-D warranty is valid, i.e., when Rt is less than
U � ut: In essence, this equation describes a random hori-
zon problem because the usage rate adds uncertainty to the
expiration of the 2-D warranty.

For technical convenience, we define Gtðht , utÞ as
Gtðht , utÞ ¼ Wtðht , utÞ � bht (4)

and Htðkt , utÞ as

Htðkt , utÞ ¼ min Gtðkt , utÞ, min
k�ht�kt

kþ Gtðht , utÞ
� �

: (5)

Then, Equation (2) becomes

Jtðkt , utÞ ¼ bkt þHtðkt , utÞ (6)

with the boundary conditions Jtð� ,UÞ ¼ 0 and JTþ1ð� , �Þ ¼
0: This reformulation is useful because we can find the opti-
mal reduce-down-to level by comparing Gtðht , utÞ at ht ¼ kt
with its minimum within ½k, kt� plus k, as shown in
Equation (5). One way to make such a comparison is to use
the concept of k-convexity in the literature on inventory
management (see, e.g., Porteus, 2002), however, it turns out
that Gtðht , utÞ has simpler structures than general k-con-
vex functions.

3. Optimal maintenance policy

In this section, we first propose a failure rate threshold pol-
icy to calculate the optimal value of the reduce-down-to
level ht. Next, we present two lemmas used in obtaining the
main results of this article. We then investigate some struc-
tural properties of the value function Gtðht , utÞ to prove the
optimality of the proposed policy. Finally, we show similar
results in a system with a constant usage rate.

Our PM policy is described by a sequence of usage-
dependent failure rate thresholds. According to
Equation (5), the failure rate threshold in period t for any
0 � u � U is defined as

stðuÞ ¼ maxfh � kjGtðh, uÞ � kþ Gtðk, uÞg:

In this definition, we try to find the maximum value of the
failure rate such that the above inequalities are satisfied. The
threshold stðuÞ depends not only on the time period, but
also on the cumulative usage. As will be seen, it exhibits dif-
ferent properties in different subintervals of ½0,U�:

We are now in a position to define a failure rate thresh-
old policy as follows:

ht ¼ kt , if kt � stðutÞ,
k , otherwise:

�

At the beginning of each period, the manufacturer evaluates
the threshold stðuÞ at u¼ut and compares stðutÞ with the
failure rate kt to trigger a PM action. If kt � stðutÞ, then
maintaining the product in this period is uneconomic. On
the other hand, if kt > stðutÞ, then the manufacturer should
perform perfect PM to reduce the failure rate to its original
level. The underlying idea of the failure rate threshold policy
is to defer PM if only a low level of maintenance effort is
needed so that the manufacturer will not bear the setup
cost. By modifying the definition of stðuÞ, this policy can be
generalized to the case where the lower bound of the
reduce-down-to level is increasing with time.

Figure 1. Two scenarios when calculating the expected one-period repair cost.
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3.1. Preliminary analysis

Before proving the optimality of the failure rate threshold
policy, we need the following two lemmas to identify the
structures of Gtðht , utÞ:
Lemma 1. Given a fixed ut 2 ½0,U�, the expected one-period
repair cost Lðht , utÞ increases linearly in ht and can be
expressed as

Lðht , utÞ ¼ cðutÞht þ qðutÞ,
where

cðutÞ ¼ c
ðU�ut

0
f ðrtÞdrt þ cðU � utÞ

ðþ1

U�ut

1
rt
f ðrtÞdrt

and

qðutÞ ¼ cg
2

ðU�ut

0
rtf ðrtÞdrt þ cgðU � utÞ2

2

ðþ1

U�ut

1
rt
f ðrtÞdrt:

Moreover, the slope cðutÞ and the intercept qðutÞ are decreas-
ing in ut.

All proofs are provided in the Appendix. Given the
cumulative usage, the higher the failure rate, the larger the
expected one-period repair cost, due to more potential fail-
ures. As ut gets larger, the 2-D warranty is more likely to
end in the current period. Therefore, an increase in the fail-
ure rate is less severe for the manufacturer.

Lemma 2. Consider the recursive equation for any
0 � u � U:

atðuÞ ¼
ðU�u

0
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt (7)

with the boundary condition aTþ1ðuÞ ¼ �cðuÞ. Let
u�t ¼ minf0 � u � UjcðuÞ þ atðuÞ � bg:

Then, we have:

(a) cðuÞ þ atðuÞis decreasing in u.
(b) atðuÞ � atþ1ðuÞ:
(c) u�t � u�tþ1:
(d) If 0 � u < u�tþ1, then cðuÞ þ ÐU�u

u�tþ1�uðcðuþ
rtÞþ atþ1ðuþ rtÞÞf ðrtÞdrt � b

Ðþ1
u�tþ1�u f ðrtÞdrt � 0:

We refer to u�t as the threshold of the cumulative usage in
period t. Its existence is guaranteed by part (a) of this lemma,
and it is decreasing in t by part (c). Since u�t is independent of
the two state variables ut and kt, we can pre-compute the

sequence fu�t gTþ1
t¼1 at the beginning of the planning horizon. We

use the values of u�tþ1 and u�t to partition the interval ½0,U� for
period t into three non-overlapping subintervals, i.e.,
½0, u�tþ1Þ, ½u�tþ1, u

�
t Þ, and ½u�t ,U�: Part (d) is proved for later use.

3.2. Properties of the value function

For any ut that lies in the subintervals ½u�tþ1, u
�
t Þ and ½u�t ,U�,

the following theorem shows that Gtðht , utÞ is a linear func-
tion of ht.

Theorem 1. (Preservation of Linearity). For t ¼ 1, 2, :::,T
and any given ut 2 ½u�tþ1,U�,Gtðht , utÞ is a linear function of
the form ðcðutÞ þ atðutÞ � bÞht þ btðutÞ, where

btðutÞ ¼ qðutÞ

þ
ðU�ut

0
ððcðut þ rtÞ þ atþ1ðut þ rtÞÞgrt

þ btþ1ðut þ rtÞÞf ðrtÞdrt (8)

with the boundary condition bTþ1ðuTþ1Þ ¼ 0 :

(a) When u�t � ut � U,Gtðht , utÞ decreases linearly with
ht. In this case, stðutÞ is infinite, and the failure rate
threshold policy is optimal in period t.

(b) When u�tþ1 � ut < u�t ,Gtðht , utÞ increases linearly with ht.

With this linear expression, we can write Wtðht , utÞ ¼
ðcðutÞ þ atðutÞÞht þ qðutÞ: Since cðutÞ captures the marginal
increase in the expected one-period repair cost, atðutÞ represents
the marginal increase in the minimum expected total cost from
period tþ 1 onward for any u�tþ1 � ut � U: According to
Lemmas 1 and 2, these marginal changes are smaller as we move
closer to the boundary of the 2-D warranty.

In part (a) of this theorem, the threshold stðutÞ is infinite
and thus can never be exceeded by the failure rate.
According to the failure rate threshold policy, we always
have ht ¼ kt: To apply this optimal policy, we need to check
whether the cumulative usage meets the condition specified
in part (a). Since ut is increasing and u�t is decreasing in the
period, it suffices for us to find when this condition is satis-
fied for the first time.

Figure 2. Implementation of the failure rate threshold policy.
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Theorem 2. There exists a period t� ¼ maxft ¼
1, 2, :::,T j ut < u�t g such that when t > t�, it is optimal for
the manufacturer not to perform PM.

Note that this result is derived under the assumption that
the manufacturer aims to minimize the expected total cost
of the 2-D warranty. If the last PM activity is scheduled in a
period after t�, its cost will outweigh the reduction in the
expected future cost of failures, because b � cðutÞ þ atðutÞ:
Therefore, after period t�, the manufacturer decides to incur
no maintenance cost, but only minimal repair costs. Under
this decision rule, the product may have a high failure rate
at the end of the 2-D warranty, leading to customer dissatis-
faction in reality.

By definition, period t� depends on when an increasing
usage path first meets the decreasing thresholds of the
cumulative usage. Hence, it is affected by the uncertainty of
a usage path. The probability mass function of t� is charac-
terized in the following proposition.

Proposition 1. At the beginning of period t, if ut falls into
the interval ½u�iþ1, u

�
i Þ, where i 2 ft þ 1, t þ 2, :::,Tg, then the

distribution of t� is given by

Prðt� ¼ jÞ ¼

1� Pr Rt < u�tþ1 � ut
� �

, if j ¼ t,

Pr
Pj�1

z¼t Rz < u�j � ut
� �

�Pr
Pj

z¼t Rz < u�jþ1 � ut
� �

, if j ¼ t þ 1, :::, i� 1,

Pr
Pi�1

z¼t Rz < u�i � ut
� �

, if j ¼ i:

8>>>>>><
>>>>>>:

This result shows that the distribution of t� depends on
the period, the cumulative usage, and the usage rate distri-
bution. At the beginning of each period, the manufacturer
can use the observed cumulative usage to update the above
probabilities. This result also shows that the probability of t�

being the current period, i.e., Prðt� ¼ tÞ, increases
with time.

We now know that the failure rate threshold policy is
optimal for any ut 2 ½u�t ,U�: When ut is contained in the
other two subintervals of ½0,U�, we still need to show how
the structural properties of Gtðht , utÞ with respect to ht lead
to the optimality of the proposed policy.

Proposition 2. For t ¼ 1, 2, :::,T � 1 and any fixed vec-
tor ðh, uÞ,Gtðh, uÞ � Gtþ1ðh, uÞ:

The optimal cost-to-go function Jt increases as the num-
ber of periods increases, as providing the service of PM for
an additional period requires an additional cost. As a result,
the value function Gt is decreasing in t.

Theorem 3 (Preservation of Monotonicity). The following
statements are true for any given ut 2 ½0, u�t Þ:

(a) Gtðht , utÞ is an increasing function of ht,
and limht!þ1 Gtðht , utÞ ¼ þ1:

(b) stðutÞ is finite.
(c) The failure rate threshold policy is optimal in period t.

When ut is less than u�t , the monotonicity of Gtðht , utÞ is
preserved under the failure rate threshold policy. This
monotonic property implies that the cost-to-go function
Wtðht , utÞ increases faster than bht: Therefore, we can view
u�t as the minimum amount of usage below which the bene-
fit of a one-unit reduction in the failure rate will be greater
than the marginal maintenance cost. When the setup cost is
zero, it pays to reduce the failure rate to its original level in
all periods t � t�; however, this trivial policy no longer
applies to a maintenance problem with a non-zero setup
cost. In our case, we perform perfect PM once the failure
rate exceeds its threshold in the corresponding period. To
look further into these usage-dependent failure rate thresh-
olds, we need to show another property of Gtðht , utÞ:

Proposition 3. For any fixed ut 2 ½0, u�t Þ,Gtðht , utÞ increases
no faster than the straight line ðcðutÞ þ atðutÞ �
bÞhtþ btðutÞ:

If the product were to be left unmaintained afterward,
the value function Gtðht , utÞ would have the same form as
this straight line because the linearity would be preserved
through dynamic programming iterations. This proposition
shows the benefit of using the failure rate threshold policy
over only minimally repairing the product.

Proposition 4. The failure rate threshold stðutÞ has the fol-
lowing properties:

(a) For ut 2 ½u�t ,U�, stðutÞ ¼ þ1:
(b) For ut 2 ½u�tþ1, u

�
t Þ, stðutÞ ¼ k þ k=ðcðutÞ þ atðutÞ � bÞ

and is increasing in ut.
(c) For ut 2 ½0, u�tþ1Þ, stðutÞ � k þ k=ðcðutÞ þ atðutÞ � bÞ:

Not only the cumulative usage, but also previous PM
actions affect the failure rate. It is, therefore, necessary to
keep track of this state variable for comparison with the
threshold stðutÞ—unless stðutÞ is infinite, i.e., when t > t�:
In part (b), the closed-form expression for stðutÞ increases
as the product has higher cumulative usage. Nevertheless,
stðutÞ is not monotonic in part (c), where we provide a
lower bound instead. The reason is that as ut increases to
u�tþ1, the value function Gtðht , utÞ approaches the straight
line ðcðutÞ þ atðutÞ � bÞht þ btðutÞ from below, whose slope
is, however, decreasing in ut.

Our policy is similar to that of Yeh and Chang (2007), where
perfect PM is performed whenever the failure rate reaches a cer-
tain threshold, but we use a sequence of usage-dependent thresh-
olds. Figure 2 shows a flow chart of our failure rate threshold
policy. Among the preparatory steps, it is critical to determine
the usage rate distribution. The manufacturer can use either the
population distribution or if having detailed information about a
product, a more customized distribution.

3.3. Optimal policy under a constant usage rate

When random usage rates are replaced by their expected
value r, the failure rate threshold policy is still optimal. For
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this deterministic system, there are two cases to consider.
First, if r � U=T, the 2-D warranty contract will expire at
the end of period T. Second, if r > U=T, it will expire dur-
ing period dU=re, where d � e is the ceiling function.

In the first case, we describe the system by the following
set of equations:

JtðktÞ ¼ min WtðktÞ, min
k�ht�kt

kþ bðkt � htÞ þWtðhtÞ
� �

, (9)

WtðhtÞ ¼ ht þ gr
2

� 	
cþ Jtþ1ðht þ grÞ, (10)

GtðhtÞ ¼ WtðhtÞ � bht , (11)

and

HtðktÞ ¼ min GtðktÞ, min
k�ht�kt

kþ GtðhtÞ
� �

: (12)

Using Equations (11) and (12), we can write

JtðktÞ ¼ bkt þHtðktÞ (13)

with the boundary condition JTþ1ð � Þ ¼ 0: These value
functions have the same definitions as before, except that
there is only one state variable. We do not record the cumu-
lative usage because we know exactly when the 2-D war-
ranty will end.

Define st ¼ maxfh � kjGtðhÞ � kþ GtðkÞg as the failure
rate threshold of period t and let t� ¼ T � bb=cc, where
b � c is the floor function. After period t�, the value func-
tion GtðhtÞ is linearly decreasing in ht. In the other periods,
it increases in ht. The manufacturer should perform perfect
PM when the failure rate kt exceeds the threshold st. The
proofs of these results are similar to those already presented
and are omitted for brevity.

Denote a PM schedule as ðn;m1, :::,mnÞ, where n is the
number of perfect PM actions, and mi is the number of
periods between the ði� 1Þth and ith actions. For n¼ 0, the
manufacturer incurs only repair costs. For any integer 1 �
n � T � 1, the manufacturer solves the integer program

minimize
mi

knþ bgr
Xn
i¼1

mi þ cgr
2

Xn
i¼1

m2
i þ

cgr
2

T �
Xn
i¼1

mi

 !2

þ ck T

subject to
Xn
i¼1

mi � T � 1

mi � 1 and integer, i ¼ 1, :::, n:

The first two terms in the objective function represent the
total cost of PM, and the remaining three terms corres-
pond to the expected total cost of repairs. The optimal n
is then chosen for the final PM schedule, which is not
necessarily periodic because PM intervals are restricted to
be integers. If we relax the integer constraints on mi,
every candidate schedule will exhibit periodicity, and thus

so will the final schedule. To be specific, for a given inte-
ger n � 1, if we replace the constraints above withPn

i¼1 mi � T and mi � 0 for i ¼ 1, :::, n and solve the
resulting quadratic program, we will obtain the solution

mi ¼ T
nþ 1

� b
ðnþ 1Þc if b < Tc:

Otherwise, all mi¼0, in which case n¼ 0 is optimal.
In the second case, the system has a different planning

horizon of length T0 þ 1, where T0 ¼ dU=re: The terminal
value function JT0þ1ðkT0þ1Þ is given as:

JT0þ1ðkT0þ1Þ ¼ � cðrT0 � UÞ
r

� kT0þ1 þ cgðrT0 � UÞ2
2r

:

The right-hand side of this equation is the negative of the
extra expected repair cost incurred after the expiration of
the 2-D warranty in period T0: The integer programming
formulation is similar to the one in the first case.

To summarize, given a constant usage rate, PM can be
optimally scheduled in either of the two ways. It is worth
noting that the scheduling decision is made at the beginning
of the planning horizon, which is impossible under random
and dynamic usage rates because their realizations affect the
implementation of the failure rate threshold policy.

4. Numerical experiments

In this section, we report the results of a base case of our
PM model and study the sensitivity of the optimal policy to
changes in the parameters. To compute the value functions
in the model, we need to discretize the continuous random
usage rate and partition the state space into a rectangular
grid. Then, we can use backward induction to evaluate the
value functions at the grid points and bilinear interpolation
at the off-grid points.

4.1. Base case

We begin by presenting a numerical example to illustrate
the analytical results discussed earlier. This example con-
cerns the 2-D warranty of an auto component with age
measured in months and usage measured in thousands of
miles. For proprietary reasons, we use simulated data for
illustration. The monthly usage Rt of the component is
described by a truncated normal distribution on the interval
[0.6,1.8] with mean r¼ 1.2 and standard deviation r ¼ 0:4:
Moreover, we choose the following parameters: T¼ 12,
U¼ 12, k ¼ 0, c¼ 300, k¼ 100, b¼ 1200, and g ¼ 0:1:

Since the thresholds of the cumulative usage can be pre-
determined, we first plot them as the dashed line in
Figure 3. This line is horizontal from period 1 to period 8
and then drops quickly to zero. It divides the 2-D warranty
into two regions: a maintenance region and a no-mainten-
ance region (the shaded area). In the maintenance region,
the manufacturer performs perfect PM when necessary. In
the other region, since the failure rate thresholds are equal
to infinity, PM should not be scheduled.
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We next turn to the value function Gtðht , utÞ: Figure 4
depicts how it changes in response to the reduce-down-to
level ht for different values of ut. The solid and dashed lines
correspond to the case ut < u�t , in which we can find the
failure rate threshold by moving from the origin along the
horizontal axis to the point where Gtðht , utÞ increases by k.
As ht gets larger, the gap between Gtðht , utÞ and the straight
line ðcðutÞ þ atðutÞ � bÞht þ btðutÞ widens. However, their
gap narrows as ut gets larger, indicating a smaller benefit
from future PM actions. When ut � u�t , they have the same
form and are both linearly decreasing in ht, as illustrated by
the dotted line.

Figure 5 plots the failure rate threshold stðutÞ against the
cumulative usage ut. When ut < u�tþ1, the threshold is
always greater than or equal to k=ðcðutÞ þ atðutÞ � bÞ,
which is consistent with part (c) of Proposition 4. These two
curves coincide after ut increases beyond a certain level
because in Figure 4, Gtðht , utÞ has some overlap with the
straight line.

Given the usage rate data in Table 3, we use the failure
rate threshold policy to determine the optimal PM schedule.

The cumulative usage and the failure rate are initially set to
zero, and their paths are shown in Figures 6(a) and 6(b),
respectively. The left figure reveals that period t� is the
eighth period. In the right figure, we see that it is more
beneficial to defer PM for the first three periods. At the
beginning of period 4, the failure rate is high enough to jus-
tify the setup cost so that a job of perfect PM is performed,
as represented by the first dashed line. The second PM job
occurs in period 6; therefore, the optimal PM schedule
under our policy is not necessarily periodic. Finally, the no-
maintenance region begins after period 8.

4.2. Sensitivity analysis

We next explore the sensitivity of the model to parameter
variations. The following values are used: b¼ 300, 1200,
2100, 3000; r ¼ 0:05, 0.4, 0.9; and k¼ 40, 100, 330. We
vary these parameters one at a time and set the others to
their base case levels. For the last two parameters, we show
the results of implementing the failure rate threshold policy
over 1000 problem instances. Each instance consists of 12
usage rate realizations, which directly affect the optimal
PM schedule.

We examine the impact of the cost ratio b/c on u�t in
Table 4. An increase in the cost ratio decreases each threshold
of the cumulative usage and makes more thresholds equal to
zero, resulting in a larger no-maintenance region. When the
marginal maintenance cost is close to the repair cost, the
manufacturer has a strong incentive to carry out PM.
However, for a high cost ratio, e.g., when b is 10 times larger
than c, simply performing minimal repairs when there are fail-
ures is better than performing PM on the component.

Figure 7 shows a histogram of t� for different values of
the standard deviation r. We can observe that the effect of
decreasing r is to decrease the variance of t�: However,
even if r is relatively low, there is still some uncertainty in
t�: This is because the low variances of the independent ran-
dom usage rates add up. To reduce the uncertainty, we
know from Proposition 1 that updating the cumulative
usage is helpful.

Another interesting quantity is the setup cost k. It is var-
ied from 40 to 330 to show its effect on the number of PM

Figure 5. Failure Rate Threshold stðutÞ when t¼ 6 and u�tþ1 ¼ 7:24:

Figure 4. Value function Gtðht , utÞ (red) when t¼ 6 and ut ¼ 1:6, 4.8, and 8.8.

Table 3. Usage rate data drawn from the truncated normal distribution.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
0.89 0.64 1.17 1.40 1.13 1.18 0.63 1.19 1.67 1.54 1.41 0.80

Figure 3. Values of the thresholds of the cumulative usage.
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actions. As seen in Figure 8, an increase in k leads to less
frequent PM. Eventually, under a large setup cost, the
manufacturer no longer performs PM for most usage paths
because failure rate thresholds are sufficiently high.

5. Conclusions and future research

This article contributes to the burgeoning literature on the
PM under a 2-D warranty by considering random and
dynamic usage rates. Such usage rates lead to a failure rate
threshold policy that is characterized by a sequence of
usage-dependent failure rate thresholds. Depending on
whether or not the failure rate is greater than its threshold
in the corresponding period, this policy chooses one of the
following two actions: performing perfect PM or no PM.
The proposed policy is still optimal under a constant usage
rate. In the numerical experiments, we show that a 2-D war-
ranty can be divided into a maintenance region and a no-
maintenance region. When the manufacturer makes deci-
sions in the maintenance region, the setup cost plays a crit-
ical role. In the no-maintenance region, the manufacturer
only performs minimal repairs.

There are several limitations to our dynamic PM model.
First, we assume a linear maintenance cost for tractability.
This assumption is necessary to derive Equation (6). An
important extension is to consider convex or more complex
cost structures. Certain structural properties of the value
functions will need to be preserved under dynamic program-
ming recursions. We conjecture that period t� still exists,
but optimal PM actions may be imperfect. Another interest-
ing avenue for further research is to consider multi-compo-
nent systems, especially when multiple failure modes are
present. The state space will be expanded to capture the fail-
ure rates of all components. An opportunistic PM policy
where components are jointly maintained can be developed
to exploit economies of scale.

Second, we assume that the manufacturer knows the
usage rate distribution at the beginning of the planning
horizon. However, in many real-life situations, there is little
knowledge about this distribution. Investigating the learning
process of the distribution function is an appealing research

Figure 8. Histogram of the number of PM actions for 1000 usage paths when
k¼ 40, 100, and 330.

Figure 6. Schematic representation of the optimal PM schedule given the simulated data.

Figure 7. Histogram of t� for 1000 usage paths when r ¼ 0:05, 0.4, and 0.9.

Table 4. Values of u�t for different cost ratios.

b / c u�1 u�2 u�3 u�4 u�5 u�6 u�7 u�8 u�9 u�10 u�11 u�12
1 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.2
4 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 4.82 0 0 0
7 3.64 3.64 3.64 3.64 3.61 0 0 0 0 0 0 0
10 0.04 0 0 0 0 0 0 0 0 0 0 0
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direction. A Bayesian approach can be used to make infer-
ences about the distribution parameters.

Third, we do not incorporate a customer decision-making
process in the current model. Our maintenance policy serves
the best interests of the manufacturer and may give custom-
ers a low utility. To alleviate this problem, the manufacturer
can provide cost-sharing PM where customers pay for some
of the maintenance services or partially pay for each of
them. Under this type of PM, the manufacturer will reduce
or even eliminate the no-maintenance region. Cost-sharing
PM is commonly seen in the automobile industry and is a
fruitful research direction.
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Appendix

Proof of Lemma 1. After some algebra, we have

Lðht , utÞ ¼
ðU�ut

0
ht þ grt

2

� 	
cf ðrtÞdrt

þ
ðþ1

U�ut

2htðU � utÞ þ gðU � utÞ2
2rt

� cfðrtÞdrt

¼ c
ðU�ut

0
f ðrtÞdrt þ cðU � utÞ

ðþ1

U�ut

1
rt
f ðrtÞdrt

 !
ht

þ cg
2

ðU�ut

0
rtf ðrtÞdrt

þ cgðU � utÞ2
2

ðþ1

U�ut

1
rt
f ðrtÞdrt

¼ cðutÞht þ qðutÞ:

Therefore, for a fixed ut, Lðht , utÞ is a linear function of ht. Because the
slope cðutÞ � 0 for any 0 � ut � U, Lðht , utÞ is increasing in ht. By dif-
ferentiating cðutÞ and qðutÞ with respect to ut, we obtain

dcðutÞ
dut

¼ �c
ðþ1

U�ut

1
rt
f ðrtÞdrt � 0

and

dqðutÞ
dut

¼ �cgðU � utÞ
ðþ1

U�ut

1
rt
f ðrtÞdrt � 0:

w

Proof of Lemma 2. We will prove parts (a) and (b) by induction
and part (c) by contradiction. From these results, part (d) follows
immediately.

(a) Since cðuÞ þ aTþ1ðuÞ ¼ 0, part (a) is satisfied for period Tþ 1.
Suppose that cðuÞ þ atþ1ðuÞ is decreasing in u. Then for any
0 � u0 < u � U, we have

cðuÞ þ atðuÞ � cðu0Þ � atðu0Þ
¼
ðU�u

0
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt

�
ðU�u0

0
ðcðu0þrtÞ þ atþ1ðu0þrtÞÞfðrtÞdrt þ cðuÞ � cðu0Þ

¼
ðU�u

0
ððcðuþ rtÞ þ atþ1ðuþ rtÞÞ � ðcðu0 þ rtÞ

þatþ1ðu0 þ rtÞÞÞf ðrtÞdrt
�
ðU�u0

U�u
ðcðu0 þ rtÞ þ atþ1ðu0 þ rtÞÞf ðrtÞdrt þ cðuÞ � cðu0Þ

�
ðU�u

0
ððcðuþ rtÞ þ atþ1ðuþ rtÞÞ � ðcðu0 þ rtÞ

þatþ1ðu0 þ rtÞÞÞf ðrtÞdrt
� 0:

The first inequality holds because cðuÞ � cðu0Þ � 0 from Lemma
1 and cðu0 þ rtÞ þ atþ1ðu0 þ rtÞ � cðUÞ þ atþ1ðUÞ ¼ 0 for any
rt 2 ½U � u,U � u0�: The second inequality is due to the induc-
tion hypothesis.

(b) For t ¼ T, we have aTðuÞ ¼ 0 � aTþ1ðuÞ ¼ �cðuÞ: Suppose that
atþ1ðuÞ � atþ2ðuÞ for any 0 � u � U: Then,

atðuÞ � atþ1ðuÞ
¼
ðU�u

0
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt

�
ðU�u

0
ðcðuþ rtþ1Þ þ atþ2ðuþ rtþ1ÞÞf ðrtþ1Þdrtþ1

¼
ðU�u

0
ðatþ1ðuþ rtÞ � atþ2ðuþ rtÞÞf ðrtÞdrt

� 0:

(c) Assume for a contradiction that there exists some t such that
0 � u�t < u�tþ1: Then we have

cðu�t Þ þ atðu�t Þ � cðu�t Þ þ atþ1ðu�t Þ > b:

The last inequality holds because u�t < u�tþ1 by assumption and
cðuÞ þ atþ1ðuÞ > b for any u < u�tþ1: It, however, contradicts
the fact that cðu�t Þ þ atðu�t Þ � b according to the definition
of u�t :

(d) Notice that

cðuÞ þ
ðU�u

u�tþ1�u
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt

�b
Ðþ1
u�tþ1�u fðrtÞdrt

¼ cðuÞ þ atðuÞ �
ðu�tþ1�u

0
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt

�b
ðþ1

u�tþ1�u
fðrtÞdrt

¼
ðu�tþ1�u

0
f ðrtÞdrt þ

ðþ1

u�tþ1�u
fðrtÞdrt

 !
ðcðuÞ þ atðuÞÞ

�
ðu�tþ1�u

0
ðcðuþ rtÞ þ atþ1ðuþ rtÞÞf ðrtÞdrt

�b
Ðþ1
u�tþ1�u fðrtÞdrt

¼
ðu�tþ1�u

0
ððcðuÞ þ atðuÞÞ � ðcðuþ rtÞ þ atþ1ðuþ rtÞÞÞf ðrtÞdrt

þ ðcðuÞ þ atðuÞ � bÞ
ðþ1

u�tþ1�u
f ðrtÞdrt

� 0:

The first equality follows from Equation (7). The inequality
holds because cðuÞ þ atðuÞ � cðuþ rtÞ þ atðuþ rtÞ �
cðuþ rtÞ þ atþ1ðuþ rtÞ and cðuÞ þ atðuÞ � b > 0 for any
0 � u < u�tþ1 � u�t : w

Proof of Theorem 1. For t ¼ T, GTðhT , uTÞ ¼ ðcðuTÞ � bÞhT þ
qðuTÞ when 0 ¼ u�Tþ1 � uT � U: (Note that aTðuTÞ ¼ 0 and
bTðuTÞ ¼ qðuTÞ:) Assume by induction that Gtþ1ðhtþ1, utþ1Þ ¼
ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞhtþ1 þ btþ1ðutþ1Þ for any utþ1 2 ½u�tþ2,U�:
When utþ1 2 ½u�tþ1,U�, the slope of Gtþ1ðhtþ1, utþ1Þ is non-positive by
the definition of u�tþ1, and thus stþ1ðutþ1Þ ¼ þ1: For any ktþ1, we
have

Htþ1ðktþ1, utþ1Þ
¼ min Gtþ1ðktþ1, utþ1Þ, mink � htþ1 � ktþ1kþ Gtþ1ðhtþ1, utþ1Þ


 �
¼ Gtþ1ðktþ1, utþ1Þ:

The last equality holds because Gtþ1ðhtþ1, utþ1Þ decreases linearly with
htþ1: This equality shows that htþ1 ¼ ktþ1 for any ktþ1 � stþ1ðutþ1Þ;
hence, the failure rate threshold policy is optimal in period tþ 1 when
utþ1 2 ½u�tþ1,U�: For period t and any ut 2 ½u�tþ1,U�,
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Gtðht , utÞ
¼ �bht þ Lðht , utÞ þ

ðU�ut

0
ðbðht þ grtÞ þHtþ1ðht þ grt , ut þ rtÞÞf ðrtÞdrt

¼ �bht þ Lðht , utÞ þ
ðU�ut

0
ðbðht þ grtÞ þ Gtþ1ðht þ grt , ut þ rtÞÞf ðrtÞdrt

¼ �bht þ Lðht , utÞ þ
ðU�ut

0
ððcðut þ rtÞ þ atþ1ðut þ rtÞÞðht þ grtÞ

þbtþ1ðut þ rtÞÞf ðrtÞdrt
¼ cðutÞ þ

ÐU�ut
0 ðcðut þ rtÞ þ atþ1ðut þ rtÞÞf ðrtÞdrt � b

� �
ht þ qðutÞ

þ
ðU�ut

0
ððcðut þ rtÞ þ atþ1ðut þ rtÞÞgrt þ btþ1ðut þ rtÞÞf ðrtÞdrt

¼ ðcðutÞ þ atðutÞ � bÞht þ btðutÞ:

The second equality holds because u�tþ1 � ut � ut þ rt � U for any
rt 2 ½0,U � ut�: After substituting the linear expression of Gtþ1ðht þ
grt , ut þ rtÞ, we arrive at the third equality. The last equality shows
that the linear structure is preserved under the failure rate thresh-
old policy.

To determine the sign of the slope of Gtðht , utÞ, we further divide the
interval ½u�tþ1,U� into two subintervals ½u�tþ1, u

�
t Þ and ½u�t ,U�: When u�t �

ut � U, the definition of u�t implies that Gtðht , utÞ is linearly decreasing
in ht. Therefore, the failure rate threshold policy is optimal in period t.
When u�tþ1 � ut < u�t ,Gtðht , utÞ is linearly increasing in ht. w

Proof of Theorem 2. Take t� ¼ 0 if the set in the definition of t� is
empty, i.e., when u�1 ¼ 0: For any t > t�, we have u�t � u�t�þ1 � ut�þ1 �
ut: The first inequality follows from part (c) of Lemma 2. The second
inequality is due to the definition of t�: The third inequality holds
because ut is increasing in t. Since the condition in part (a) of
Theorem 1 is satisfied for t ¼ t� þ 1, t� þ 2, :::,T, we know that the
manufacturer chooses not to perform PM in these periods. w

Proof of Proposition 1. If ut falls into the interval ½u�iþ1, u
�
i Þ, then t�

takes values in the set ft, t þ 1, :::, ig: To describe its distribution, we
first prove by induction that Prðt� � jÞ ¼ Prðut þ

Pj�1
z¼t Rz < u�j Þ for

j ¼ t þ 1, t þ 2, :::, i: When j ¼ i, we have Prðt� � iÞ ¼ Prðt� ¼ iÞ ¼
Prðut þ

Pi�1
z¼t Rz < u�i Þ: Suppose that Prðt� � jþ 1Þ ¼ Prðut þPj

z¼t Rz < u�jþ1Þ: Using the law of total probability, this equation can
be rewritten as

Prðt� � jþ 1Þ
¼ Pr Rj < u�jþ1 � ut �

Xj�1

z¼t

Rz

 !

¼ Pr ut þ
Xj�1

z¼t

Rz < u�jþ1

 !
Pr Rj < u�jþ1 � ut �

Xj�1

z¼t

Rzjut þ
Xj�1

z¼t

Rz < u�jþ1

 !

þ Pr ut þ
Xj�1

z¼t

Rz � u�jþ1

 !
Pr Rj < u�jþ1 � ut �

Xj�1

z¼t

Rzjut þ
Xj�1

z¼t

Rz � u�jþ1

 !

¼ Pr ut þ
Xj�1

z¼t

Rz < u�jþ1

 !
Pr Rj < u�jþ1 � ut �

Xj�1

z¼t

Rzjut þ
Xj�1

z¼t

Rz < u�jþ1

 !
,

where the last conditional probability in the second equality is zero.
Then we have

Prðt� � jÞ ¼ Prðt� � jþ 1Þ þ Prðt� ¼ jÞ
¼ Prðt� � jþ 1Þ þ Pr u�jþ1 � ut þ

Xj�1

z¼t

Rz < u�j

 !

þ Pr ut þ
Xj�1

z¼t

Rz < u�jþ1

 !
Pr Rj � u�jþ1 � ut �

Xj�1

z¼t

Rzjut þ
Xj�1

z¼t

Rz < u�jþ1

 !

¼ Pr ut þ
Xj�1

z¼t

Rz < u�jþ1

 !
þ Pr u�jþ1 � ut þ

Xj�1

z¼t

Rz < u�j

 !

¼ Pr ut þ
Xj�1

z¼t

Rz < u�j

 !
,

where the second equality holds because Prðt� ¼ jÞ is the sum of the
probability that u�jþ1 � uj < u�j and the probability that uj < u�jþ1 and
ujþ1 � u�jþ1: To simplify Prðt� ¼ jÞ, we proceed as follows:

Prðt� ¼ jÞ ¼ Prðt� � jÞ � Prðt� � jþ 1Þ

¼ Pr ut þ
Xj�1

z¼t

Rz < u�j

 !
� Pr ut þ

Xj
z¼t

Rz < u�jþ1

 !

¼ Pr
Xj�1

z¼t

Rz < u�j � ut

 !
� Pr

Xj
z¼t

Rz < u�jþ1 � ut

 !
:

We conclude the proof by checking that

Prðt� ¼ tÞ ¼ Pr Rt � u�iþ1 � ut
� � ¼ 1� Pr Rt < u�iþ1 � ut

� �
:

Proof of Proposition 2. We first show inductively that Jtðk, uÞ �
Jtþ1ðk, uÞ for any fixed vector ðk, uÞ: When t ¼ T, JTðk, uÞ �
JTþ1ðk, uÞ ¼ JTðk, uÞ � 0: Assume by induction that Jtþ1ðk, uÞ �
Jtþ2ðk, uÞ for period tþ 1. Since

Gtðh, uÞ ¼ Lðh, uÞ þ
ðU�u

0
Jtþ1ðhþ grt , uþ rtÞf ðrtÞdrt � bh,

we have

Gtðh, uÞ � Gtþ1ðh, uÞ ¼
ðU�u

0
ðJtþ1ðhþ grt , uþ rtÞ � Jtþ2ðhþ grt, uþ rtÞÞf ðrtÞdrt � 0:

For period t,

Jtðk, uÞ � Jtþ1ðk, uÞ
¼ Htðk, uÞ � Htþ1ðk, uÞ
¼ min Gtðk, uÞ, mink �h�kkþ Gtðh, uÞ

n o
�min Gtþ1ðk, uÞ, mink�h�k kþ Gtþ1ðh, uÞ

n o
� min Gtþ1ðk, uÞ, mink�h�k kþ Gtþ1ðh, uÞ

n o
�min Gtþ1ðk, uÞ, mink�h�k kþ Gtþ1ðh, uÞ

n o
¼ 0:

The inequality holds because Gtðk, uÞ � Gtþ1ðk, uÞ and
mink � h � kkþ Gtðh, uÞ ¼ kþ Gtðh�t , uÞ � kþ Gtþ1ðh�t , uÞ

� mink � h � kkþ Gtþ1ðh, uÞ,
where h�t ¼ arg mink � h � kkþ Gtðh, uÞ: Since Jtðk, uÞ �

Jtþ1ðk, uÞ, it follows that Gt�1ðh, uÞ � Gtðh, uÞ: w

Proof of Theorem 3. The proof is based on an induction argument built
around part (a) of this theorem. For period T, GTðhT , uTÞ ¼ ðcðuTÞ �
bÞhT þ qðuTÞ is strictly increasing in hT for any 0 � uT < u�T , and hence
limhT!þ1 GTðhT , uTÞ ¼ þ1: Suppose that part (a) is true for period tþ 1.
Part (b) follows immediately from part (a). To obtain the optimality of the
failure rate threshold policy, we examine Htþ1ðktþ1, utþ1Þ in the following
two cases: (i) for ktþ1 > stþ1ðutþ1Þ, we have
Htþ1 ktþ1, utþ1ð Þ ¼ min Gtþ1 ktþ1, utþ1ð Þ, mink�htþ1�ktþ1

kþ Gtþ1 htþ1, utþ1ð Þ
n o

¼ minfGtþ1 ktþ1, utþ1ð Þ, kþ Gtþ1 k, utþ1ð Þg
¼ kþ Gtþ1 k, utþ1ð Þ:

The second equality follows from the induction hypothesis that
Gtþ1ðhtþ1, utþ1Þ is increasing in htþ1: The last equality is due to the
definition of stþ1ðutþ1Þ: (ii) For ktþ1 � stþ1ðutþ1Þ, similarly, we
have Htþ1ðktþ1, utþ1Þ ¼ Gtþ1ðktþ1, utþ1Þ:

We next establish that Htþ1ðktþ1, utþ1Þ is increasing in ktþ1 when
0 � utþ1 < u�tþ1: Suppose that k0tþ1 < ktþ1: There are three cases
to consider:

(i) If stþ1ðutþ1Þ < k0tþ1 < ktþ1, then Htþ1ðktþ1, utþ1Þ �
Htþ1ðk0tþ1, utþ1Þ ¼ kþ Gtþ1ðk, utþ1Þ � k� Gtþ1ðk, utþ1Þ ¼ 0:

(ii) If k0tþ1 � stþ1ðutþ1Þ < ktþ1, then Htþ1ðktþ1, utþ1Þ �
Htþ1ðk0tþ1, utþ1Þ ¼ kþ Gtþ1ðk, utþ1Þ � Gtþ1ðk0tþ1, utþ1Þ � 0 by
the definition of stþ1ðutþ1Þ:

(iii) If k0tþ1 < ktþ1 � stþ1ðutþ1Þ, then Htþ1ðktþ1, utþ1Þ �
Htþ1ðk0tþ1, utþ1Þ ¼ Gtþ1ðktþ1, utþ1Þ � Gtþ1ðk0tþ1, utþ1Þ � 0 from
the induction hypothesis.
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After knowing the monotonicity of Htþ1ðktþ1, utþ1Þ, we can show
that Gtðht , utÞ is increasing with respect to ht in two cases. Consider
first the case 0 � ut < u�tþ1: For any h0t < ht , we have

Gtðht , utÞ � Gtðh0t , utÞ
¼ ðcðutÞ � bÞðht � h0tÞ þ

ðU�ut

0
ðJtþ1ðht þ grt , ut þ rtÞ

�Jtþ1ðh0t þ grt , ut þ rtÞÞf ðrtÞdrt
¼ ðcðutÞ � bÞðht � h0tÞ þ

ðU�ut

u�tþ1�ut

ðJtþ1ðht þ grt , ut þ rtÞ
�Jtþ1ðh0t þ grt , ut þ rtÞÞf ðrtÞdrt

þ
ðu�tþ1�ut

0
ðJtþ1ðht þ grt , ut þ rtÞ � Jtþ1ðh0t þ grt , ut þ rtÞÞf ðrtÞdrt

¼ ðcðutÞ � bÞðht � h0tÞ þ
ðU�ut

u�tþ1�ut

ðcðut þ rtÞ þ atþ1ðut þ rtÞÞðht � h0tÞf ðrtÞdrt

þ
ðu�tþ1�ut

0
ðbðht � h0tÞ þHtþ1ðht þ grt , ut þ rtÞ �Htþ1ðh0t þ grt , ut þ rtÞÞf ðrtÞdrt

¼ cðutÞ þ
ðU�ut

u�tþ1�ut

ðcðut þ rtÞ þ atþ1ðut þ rtÞÞf ðrtÞdrt � b
ðþ1

u�tþ1�ut

fðrtÞdrt
 !

ðht � h0tÞ

þ
ðu�tþ1�ut

0
ðHtþ1ðht þ grt , ut þ rtÞ �Htþ1ðh0t þ grt , ut þ rtÞÞf ðrtÞdrt � 0:

The third equality holds because

Jtþ1ðktþ1, utþ1Þ ¼ bktþ1 þ Htþ1ðktþ1, utþ1Þ
¼ bktþ1 þ Gtþ1ðktþ1, utþ1Þ
¼ ðcðutþ1Þ þ atþ1ðutþ1ÞÞktþ1 þ btþ1ðutþ1Þ

for any u�tþ1 � utþ1 � U: The inequality is due to part (d) of Lemma 2
and the fact that Htþ1ðktþ1, utþ1Þ is increasing in ktþ1 when 0 � utþ1 <
u�tþ1: Given any 0 � ut < u�tþ1, we have limht!þ1 Gtðht , utÞ �
limht!þ1 Gtþ1ðht , utÞ ¼ þ1 by Proposition 2. Now consider the case
u�tþ1 � ut < u�t : Part (a) follows immediately from Theorem 1. This
concludes the induction argument for the first part of this theorem.
The proofs of parts (b) and (c) are omitted because they are similar to
those for period tþ 1. w

Proof of Proposition 3. Equivalently, we show that for any 0 � ut <
u�t and h0t < ht ,

Gtðht , utÞ � Gtðh0t , utÞ � ððcðutÞ þ atðutÞ � bÞht þ btðutÞ
�ðcðutÞ þ atðutÞ � bÞh0t � btðutÞÞ
¼ Gtðht , utÞ � Gtðh0t , utÞ � ðcðutÞ þ atðutÞ � bÞðht � h0tÞ
� 0:

In period T, GTðhT , uTÞ � GTðh0T , uTÞ � ðcðuTÞ þ aTðuTÞ � bÞðhT �
h0TÞ ¼ 0 when 0 ¼ u�Tþ1 � uT < u�T and h0T < hT : Suppose that this is
true for period tþ 1. We now demonstrate that

Htþ1ðktþ1, utþ1Þ � Htþ1ðk0tþ1, utþ1Þ
� ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ
� 0

for any 0 � utþ1 < u�tþ1 and k0tþ1 < ktþ1 by investigating the following
three cases:

(i) If stþ1ðutþ1Þ < k0tþ1 < ktþ1, then

Htþ1ðktþ1, utþ1Þ �Htþ1ðk0tþ1, utþ1Þ
� ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ
¼ kþ Gtþ1ðk, utþ1Þ � k� Gtþ1ðk, utþ1Þ

� ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ
¼ �ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ � 0

by the definition of u�tþ1:

(ii) If k0tþ1 � stþ1ðutþ1Þ < ktþ1, then

Htþ1 ktþ1, utþ1ð Þ � Htþ1 k0tþ1, utþ1
� �

� c utþ1ð Þ þ atþ1 utþ1ð Þ � b
� �

ktþ1 � k0tþ1

� �
¼ kþ Gtþ1 k, utþ1ð Þ � Gtþ1 k0tþ1, utþ1

� �
� c utþ1ð Þ þ atþ1 utþ1ð Þ � b
� �

ktþ1 � k0tþ1

� �
� Gtþ1 stþ1 utþ1ð Þ, utþ1ð Þ � Gtþ1 k0tþ1, utþ1

� �
� c utþ1ð Þ þ atþ1 utþ1ð Þ � b
� �

stþ1 utþ1ð Þ � k0tþ1

� �
� 0:

The first inequality holds because kþ Gtþ1ðk, utþ1Þ ¼
Gtþ1ðstþ1ðutþ1Þ, utþ1Þ and cðutþ1Þ þ atþ1ðutþ1Þ � b > 0 when
0 � utþ1 < u�tþ1: The second inequality follows from the induc-
tion hypothesis.

(iii) If k0tþ1 < ktþ1 � stþ1ðutþ1Þ, then

Htþ1ðktþ1, utþ1Þ � Htþ1ðk0tþ1, utþ1Þ
�ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ

¼ Gtþ1ðktþ1, utþ1Þ � Gtþ1ðk0tþ1, utþ1Þ
� ðcðutþ1Þ þ atþ1ðutþ1Þ � bÞðktþ1 � k0tþ1Þ

� 0

from the induction hypothesis.
For period t, we consider the cases 0 � ut < u�tþ1 and u�tþ1 � ut < u�t :
In the first case, for any h0t < ht , we have

Gtðht , utÞ � Gtðh0t , utÞ � ðcðutÞ þ atðutÞ � bÞðht � h0tÞ
¼ cðutÞ þ

ÐU�ut
u�tþ1�ut

ðcðut þ rtÞ þ atþ1ðut þ rtÞÞf ðrtÞdrt � b
Ðþ1
u�tþ1�ut

fðrtÞdrt
� �

ðht � h0tÞ
þ Ð u�tþ1�ut

0 ðHtþ1ðht þ grt , ut þ rtÞ �Htþ1ðh0t þ grt, ut þ rtÞÞf ðrtÞdrt
� ðcðutÞ þ atðutÞ � bÞðht � h0tÞ

¼ Ð u�tþ1�ut
0 ðHtþ1ðht þ grt, ut þ rtÞ �Htþ1ðh0t þ grt , ut þ rtÞ
� ðcðut þ rtÞ þ atþ1ðut þ rtÞ � bÞðht � h0tÞÞf ðrtÞdrt

� 0:

The first equality can be seen from the proof of Theorem 3, and
the second equality follows from Equation (7). The inequality is sub-
stantiated by the statement about Htþ1: The proof for the second case
is trivial and thus omitted. w

Proof of Proposition 4. Part (a) follows from Theorem 1. As for
part (b), since Gtðht , utÞ is linear and strictly increasing in htwhen ut 2
½u�tþ1, u

�
t Þ, if we start at ht ¼ k and take a step of k=ðcðutÞ þ atðutÞ �

bÞ, then we will arrive at ht ¼ stðutÞ: Differentiating stðutÞ with respect
to utyields

dstðutÞ
dut

¼ �k

ðcðutÞ þ atðutÞ � bÞ2 �
d ðcðutÞ þ atðutÞÞ

dut
� 0,

where the inequality is due to part (a) of Lemma 2. Next, we establish
the third part of this proposition. By Proposition 3, we have
Gtðht , utÞ � Gtðk, utÞ � ðcðutÞ þ atðutÞ � bÞðht � kÞ � 0 for any 0 �
ut < u�tþ1: Letting ht ¼ stðutÞ yields GtðstðutÞ, utÞ � Gtðk, utÞ ¼ k �
ðcðutÞ þ atðutÞ � bÞðstðutÞ � kÞ, or equivalently, stðutÞ � kþ
k=ðcðutÞ þ atðutÞ � bÞ: w
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